

Moolarben Coal Complex Open Cut Optimisation Modification

Environmental Assessment

APPENDIX B

Air Quality Assessment

AIR QUALITY ASSESSMENT MOOLARBEN COAL PROJECT OC OPTIMISATION MODIFICATION

Moolarben Coal Operations Pty Ltd

25 October 2017

Job Number 17010656

Prepared by Todoroski Air Sciences Pty Ltd Suite 2B, 14 Glen Street Eastwood, NSW 2122 Phone: (02) 9874 2123 Fax: (02) 9874 2125 Email: info@airsciences.com.au

Air Quality Assessment Moolarben Coal Project OC Optimisation Modification

DOCUMENT CONTROL

Report Version	Date	Prepared by	Reviewed by
DRAFT - 001	06/07/2017	P Henschke	D Kjellberg
DRAFT - 002	21/07/2017	P Henschke	A Todoroski
DRAFT - 003	08/09/2017	P Henschke	
DRAFT - 004	19/09/2017	P Henschke	
FINAL - 001	25/10/2017	P Henschke & A Todoroski	

This report has been prepared in accordance with the scope of works between Todoroski Air Sciences Pty Ltd (TAS) and the client. TAS relies on and presumes accurate the information (or lack thereof) made available to it to conduct the work. If this is not the case, the findings of the report may change. TAS has applied the usual care and diligence of the profession prevailing at the time of preparing this report and commensurate with the information available. No other warranty or guarantee is implied in regard to the content and findings of the report. The report has been prepared exclusively for the use of the client, for the stated purpose and must be read in full. No responsibility is accepted for the use of the report or part thereof in any other context or by any third party.

TABLE OF CONTENTS

1	INT	RODUCTION	1
	1.1	Background	1
	1.2	Previous modifications	1
2	MO	DIFICATION DESCRIPTION	2
	2.1	Open cut production increase and mine sequence	2
	2.2	Pit disturbance limits	2
	2.3	Other optimisations	3
3	PRC	DECT SETTING	4
4	AIR	QUALITY ASSESSMENT CRITERIA	8
	4.1	NSW EPA impact assessment criteria	8
	4.2	NSW Voluntary Land Acquisition and Mitigation Policy	8
	4.3	Project approval criteria	9
	4.4	Environmental Protection Licence operating conditions	9
5	EXIS	TING ENVIRONMENT	11
	5.1	Local climate	11
	5.2	Local meteorological conditions	13
	5.3	Local air quality monitoring	16
	5.3.1	TEOM monitoring	17
	5.3.2	HVAS monitoring	19
	5.3.3	Dust deposition monitoring	20
6	DIS	PERSION MODELLING APPROACH	21
	6.1	Modelling scenarios	21
	6.2	Emissions estimation	25
	6.2.1	Emissions from other mining operations	27
	6.3	Existing air quality monitoring and management	27
	6.4	Modelling methodology	28
7	DIS	PERSION MODELLING RESULTS	29
	7.1	Summary of modelling predictions (incremental Project-only impacts)	30
	7.2	Comparison of modelling predictions	30
	7.3	Assessment of total (cumulative) 24-hour average PM _{2.5} and PM ₁₀ concentrations	34
	7.3.1	Assessment of cumulative PM _{2.5} impacts	35
	7.3.2	Assessment of cumulative PM ₁₀ impacts	35
8	POT	ENTIAL COAL DUST EMISSIONS FROM TRAIN WAGONS	41
	8.1	Emission estimation	41
	8.2	Modelling approach	41
	8.3	Modelling predictions	41
	8.4	Summary	42
9	BLA	ST FUME ASSESSMENT	43
	9.1	General outline of best practice blast management	43
	9.2	Management of potential air quality impacts from blasting	43
1() GRE	ENHOUSE GAS ASSESSMENT	44
	10.1	Greenhouse gas inventory	44

1(0.2 Summary of greenhouse gas emissions	45
11	SUMMARY AND CONCLUSIONS	46
12	REFERENCES	47

LIST OF APPENDICES

- Appendix A Sensitive Receptor Locations
- Appendix B Windrose Plots
- Appendix C Emissions Calculation
- Appendix D Modelling Predictions
- Appendix E Isopleth Diagrams
- Appendix F Further detail regarding 24-hour PM_{10} analysis

LIST OF TABLES

Table 4-1: NSW EPA air quality impact assessment criteria	8
Table 4-2: Particulate matter mitigation criteria	8
Table 4-3: Particulate matter acquisition criteria	9
Table 4-4: Long term impact assessment criteria for particulate matter	9
Table 4-5: Short term impact assessment criterion for particulate matter	9
Table 4-6: Long term impact assessment criteria for deposited dust	9
Table 5-1: Monthly climate statistics summary – Gulgong Post Office	11
Table 5-2: Summary of TEOM PM ₁₀ levels MCO monitoring stations (μ g/m ³)	17
Table 5-3: Summary of annul average HVAS PM_{10} levels (µg/m ³)	
Table 5-4: Annual average dust deposition (g/m²/month)	20
Table 6-1: Estimated emission for the proposed modification (kg of TSP)	25
Table 6-2: Estimated emissions from nearby mining operations (kg of TSP)	
Table 7-1: Estimated annual average contribution from other non-modelled dust sources	29
Table 7-2: Summary of modelled predictions for the Moolarben Coal Complex includ	ling the
Modification where predicted impacts exceed assessment criteria	30
Table 7-3: Cumulative 24-hour average $PM_{2.5}$ assessment - maximum number of additional day	ys above
24-hour average PM _{2.5} criterion	35
Table 7-4: NSW EPA contemporaneous assessment - maximum number of additional days ab	ove 24-
hour average PM ₁₀ criterion	36
Table 7-5: NSW EPA contemporaneous assessment - maximum number of additional days ab	
hour average criterion with implementation of predictive/ reactive measures	37
Table 10-1: Annual greenhouse gas emissions for the Moolarben Coal Complex – Open Cut Op	erations
	44
Table 10-2: Summary of increased annual CO ₂ -e emissions for the Modification	45

LIST OF FIGURES

Figure 3-1: Local setting	5
Figure 3-2: Land ownership	6
Figure 3-3 Topography surrounding the Moolarben Coal Complex	7
Figure 5-1: Monthly climate statistics summary – Gulgong Post Office	12
Figure 5-2: MCO weather station locations	
Figure 5-3: Annual and seasonal windroses for WS1 (2011)	14
Figure 5-4: Annual and seasonal windroses for WS3 (2012)	15
Figure 5-5: Monitoring locations	
Figure 5-6: TEOM 24-hour average PM ₁₀ concentrations at MCO TEOM monitors	18
Figure 5-7: HVAS 24-hour average PM ₁₀ concentrations	19
Figure 6-1: Indicative mine plan for 2019	22
Figure 6-2: Indicative mine plan for 2021	23
Figure 6-3: Indicative mine plan for 2026	24
Figure 7-1: Comparison of maximum incremental 24-hour average PM_{10} concentrations for Y	Year 6
(previously assessed – MOD9) and Year 2019 (the Modification) ($\mu g/m^3$)	31
Figure 7-2: Comparison of cumulative annual average PM_{10} concentrations for Year 6 (prev	viously
assessed – MOD9) and Year 2019 (the Modification) ($\mu g/m^3$)	31
Figure 7-3: Comparison of maximum incremental 24-hour average PM_{10} concentrations for Ye	
(previously assessed – MOD9) and Year 2021 (the Modification) ($\mu g/m^3$)	32
Figure 7-4: Comparison of cumulative annual average PM_{10} concentrations for Year 11 (prev	viously
assessed) and Year 2021 (the Modification) ($\mu g/m^3$)	32
Figure 7-5: Comparison of maximum incremental 24-hour average PM_{10} concentrations for Ye	ear 16
(previously assessed) and Year 2026 (the Modification) ($\mu g/m^3$)	
Figure 7-6: Comparison of cumulative annual average PM_{10} concentrations for Year 16 (prev	/iously
assessed) and Year 2026 (the Modification) (µg/m ³)	33
Figure 7-7: Locations available for contemporaneous cumulative impact assessment	34
Figure 7-8: Predicted 24-hour average PM ₁₀ concentrations for sensitive receptor locations 9 and	
Year 2019 (unmitigated)	
Figure 7-9: Predicted 24-hour average PM ₁₀ concentrations for sensitive receptor locations 9 and	d 40 in
Year 2021 (unmitigated)	
Figure 7-10: Predicted 24-hour average PM_{10} concentrations for sensitive receptor locations 9 and	
Year 2026 (unmitigated)	
Figure 8-1: Maximum predicted 24-hour average TSP concentration based on train wagon emit	issions
	42

1 INTRODUCTION

Moolarben Coal Operations Pty Ltd (MCO) is proposing to optimise open cut mining operations at the Moolarben Coal Complex. These optimisations would require MCO to modify Project Approvals for Stage 1 and Stage 2 (herein referred to as the Open Cut Optimisation Modification (the Modification)) under section 75W of the Environmental Planning and Assessment Act, 1979 (EP&A Act).

Todoroski Air Sciences has been engaged by MCO to prepare an air quality assessment for the Modification.

1.1 Background

MCO is the operator of the Moolarben Coal Complex on behalf of the Moolarben Joint Venture (Moolarben Coal Mines Pty Ltd (MCM), Sojitz Moolarben Resources Pty Ltd and a consortium of Korean power companies). MCM and MCO are wholly owned subsidiaries of Yancoal Australia Limited (Yancoal).

Mining operations at the Moolarben Coal Complex are approved until 31 December 2038 and are carried out in accordance with Project Approval (05_0117) (Moolarben Coal Project Stage 1) and Project Approval (08_0135) (Moolarben Coal Project Stage 2).

1.2 Previous modifications

Previously, detailed air quality impact assessments have been prepared for the Moolarben Coal Complex by Todoroski Air Sciences for the Moolarben Coal Project Stage 1 Optimisation Modification (MOD9) (**Todoroski Air Sciences, 2013**), the OC4 South-West Modification (OC4 South-West MOD) (**Todoroski Air Sciences, 2014**) and UG1 Optimisation Modification (UG1 MOD) (**Todoroski Air Sciences, 2015a**). This assessment has incorporated these modifications and has applied a similar methodology for assessing the potential air quality impacts associated with this Modification.

2 MODIFICATION DESCRIPTION

A summary of the description of the proposed Modification is outlined below.

2.1 Open cut production increase and mine sequence

The Stage 1 and Stage 2 Project Approvals authorise the following from open cut operations:

- The extraction of up to 8 million tonnes per annum (Mtpa) of run-of-mine (ROM) from Stage 1 open cut pits; and
- + The extraction of up to 12Mtpa of ROM from Stage 2 open cut pits.

However, the combined total of ROM coal able to be extracted from the Stage 1 and Stage 2 open cuts is currently limited to 13Mtpa.

With no material change to the existing open cut mining fleet, and with changes to the sequencing of open cut mining operations, MCO would be able to optimise operations to achieve the following production:

- Up to 10Mtpa of ROM coal from Stage 1 open cuts (OC1, OC2 and OC3);
- Up to 16Mtpa of ROM coal from the Stage 2 open cut (OC4); and,
- + Combined total (Stage 1 and Stage 2) of up to 16Mtpa of ROM coal.

These changes in open cut production rates would also result in changes to the following:

- Increase in the combined open cut and underground ROM coal limit from 21 to 24Mtpa (i.e. 16Mtpa from open cuts and 8Mtpa from underground);
- Increase in coal processing (washing) limit from 13 to 16Mtpa;
- Increase in the product coal limit from 18 to 22Mtpa;
- Increase in the product coal rail movements (1 additional train per day on average and 2 additional trains per day at peak);
- + Increase in the annual rate of coal rejects production; and,
- Increase in the size of ROM coal stockpiles and product coal stockpiles.

2.2 Pit disturbance limits

The Modification would involve minor extensions to the disturbance limits of the OC2 and OC3 open cut pits. These extensions are required to enable the following:

- Minor extension of the OC2 western pit limit to provide a stable long-term final landform;
- + Straightening of the western pit limits of OC3 to facilitate safe and efficient mining; and,
- + Minor extension of the OC3 eastern pit limit to reflect the latest resource definition results.

There would be no change to OC1 or OC4 disturbance limits for the Modification.

2.3 Other optimisations

MCO has also identified the following additional operational optimisations, which form part of the scope of the Modification:

- Installation of water treatment facilities to support authorised discharge under Environmental Protection Licence (EPL) release conditions, and associated increase in the rate of controlled releases, when required;
- Construction of a bypass coal conveyor to facilitate bypass of ROM coal from the open cuts;
- + Additional train loadout bin and conveyor;
- Minor changes to the alignment of the haul road from OC2 to OC3, and the location of the OC3 Mine Infrastructure Area;
- + Additional internal road from OC2 to OC4 via Carrs Gap;
- Ancillary infrastructure (e.g. access tracks, power, services, communications, conveyors and pipelines); and,
- + Ongoing exploration activities within mining lease areas.

3 PROJECT SETTING

The Moolarben Coal Complex is located in the Western Coalfields of New South Wales (NSW), approximately 40 kilometres (km) north of Mudgee.

It is bordered by the Goulburn River to the northwest, Goulburn River National Park to the northeast and Munghorn Gap Nature Reserve to the south. The Ulan Coal Mine is located to the northwest and Wilpinjong Coal Mine is located to the east. Ulan settlement and Cooks Gap are located to the west and southwest, respectively.

Figure 3-1 presents the location of the Moolarben Coal Complex in relation to the neighbouring coal mining operations and **Figure 3-2** identifies privately-owned and mine-owned (or Under Contract/ Purchase Agreement) receptors of relevance to this study. **Appendix A** provides a detailed list of all the privately-owned and mine-owned or Under Contract/ Purchase Agreement receptors considered in this assessment.

Figure 3-3 presents a three-dimensional visualisation of the topography in the vicinity of the Moolarben Coal Complex. The area can be characterised as complex hilly terrain with the majority of the elevated areas forming the Goulburn River National Park and the Munghorn Gap Nature Reserve. The local terrain in this area has a significant effect on wind patterns and the dispersion of dust.

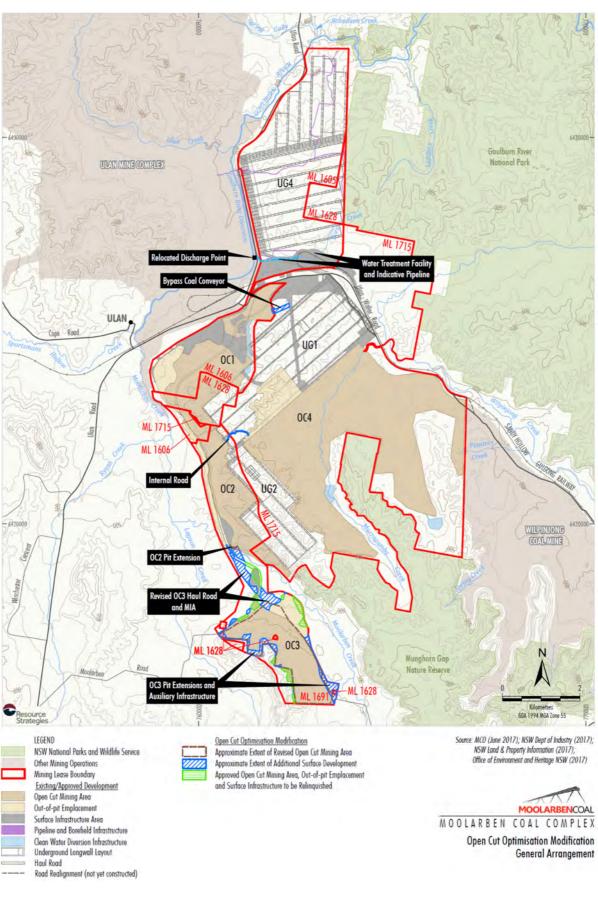


Figure 3-1: Local setting

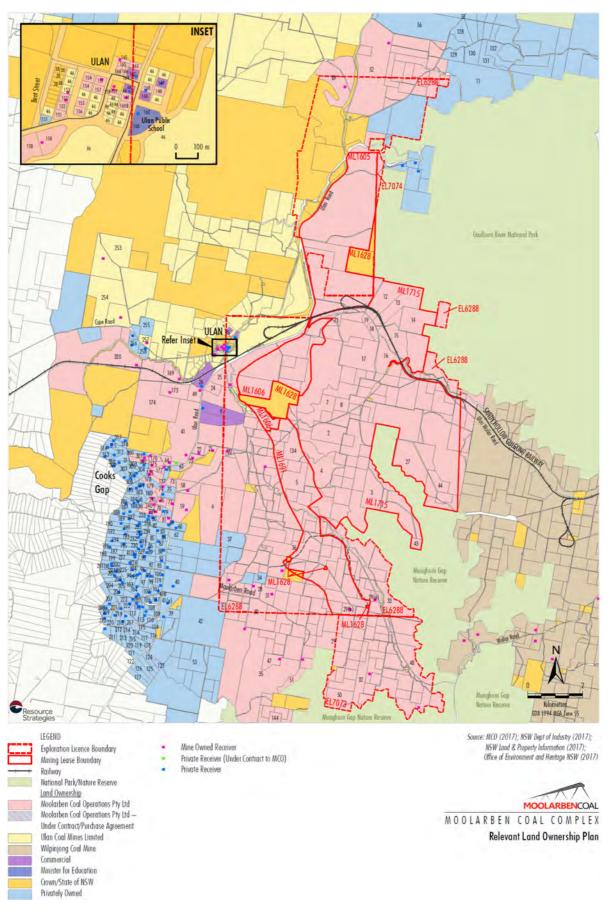


Figure 3-2: Land ownership

6

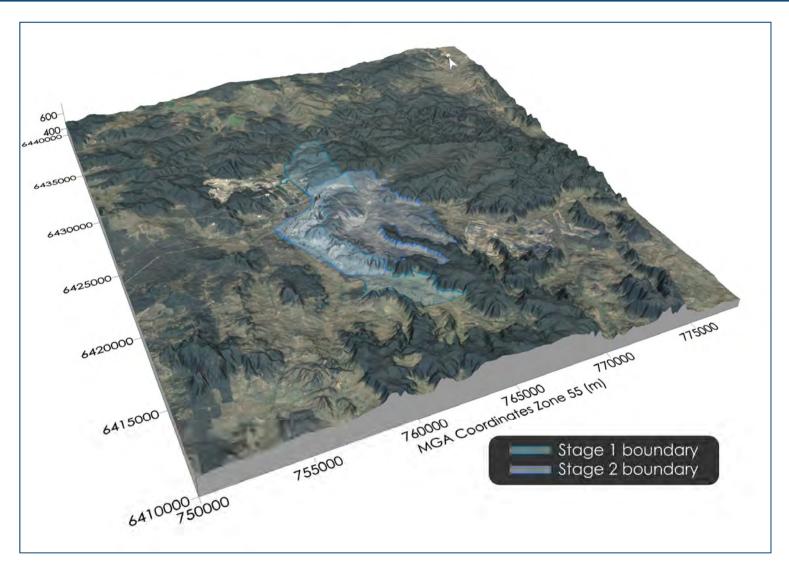


Figure 3-3 Topography surrounding the Moolarben Coal Complex

4 AIR QUALITY ASSESSMENT CRITERIA

Air quality criteria are benchmarks set to protect the general health and amenity of the community in relation to air quality. The sections below identify the potential air emissions generated by the proposed modification and the applicable air quality criteria.

4.1 NSW EPA impact assessment criteria

Table 4-1 summarises the air quality goals that are relevant to this assessment as outlined in the NSW Environment Protection Authority (EPA) document *Approved Methods for the Modelling and Assessment of Air Pollutants in New South Wales* (**NSW EPA, 2017**).

The air quality goals for total impact relate to the total dust burden in the air and not just the dust from the proposed modification. Consideration of background dust levels needs to be made when using these goals to assess potential impacts.

Table 4-1: NSW EPA air quality impact assessment criteria				
Pollutant	Averaging Period	Impact	Criterion	
Total suspended particulate (TSP) matter	Annual	Total	90μg/m³	
Particulate matter ≤ 10µm	Annual	Total	25μg/m ³	
(PM ₁₀)	24 hour	Total	50μg/m ³	
Particulate matter ≤ 2.5µm	Annual	Total	8μg/m ³	
(PM _{2.5})	24 hour	Total	25μg/m ³	
Deve eite dideet	Annual	Incremental	2g/m²/month	
Deposited dust	Annual	Total	4g/m²/month	

Source: NSW EPA (2017)

 μ m = micrometre μ g/m³ = micrograms per cubic metre g/m²/month = grams per square metre per month

The Mining State Environment Protection Policy (SEPP) non-discretionary standard with respect to cumulative air quality at private dwellings for PM₁₀ annual average is 30µg/m³.

4.2 NSW Voluntary Land Acquisition and Mitigation Policy

Part of the NSW Voluntary Land Acquisition and Mitigation Policy (VLAMP) dated 15 December 2014 and gazetted on 19 December 2014 describes the NSW Government's policy for voluntary mitigation and land acquisition to address particulate matter impacts from state significant mining, petroleum and extractive industry developments.

Voluntary mitigation rights may apply where, even with best practice management, the development contributes to exceedances of the criteria in **Table 4-2** at any residence or workplace.¹

Table 4-2: Particulate matter mitigation criteria					
Pollutant	Averaging period	Mitigation (Criterion	Impact Type	
PM ₁₀	Annual	30µg/r	n³*	Human health	
PM ₁₀	24 hour	50µg/m) ^{3**}	Human health	
TSP	Annual	90µg/r	n³*	Amenity	
Deposited dust	Annual	2g/m²/month**	4g/m²/month*	Amenity	

Source: NSW Government (2014)

*Cumulative impact (i.e. increase in concentration due to the development plus background concentrations due to all other sources). **Incremental impact (i.e. increase in concentrations due to the development alone), with zero allowable exceedances of the criteria.

¹ Where any exceedance would be unreasonably detrimental to workers health or carrying out of the business.

Voluntary acquisition rights may apply where, even with best practice management, the development contributes to exceedances of the criteria in Table 4-3 at any residence, workplace or on more than 25% of any privately owned land where there is an existing dwelling or where a dwelling could be built under existing planning controls (vacant land).

Pollutant	Averaging period	Acquisition Criterion		Impact Type
PM ₁₀	Annual	30µg/n	n ^{3*}	Human health
PM ₁₀	24 hour	50μg/m	3**	Human health
TSP	Annual	90µg/n	n ³ *	Amenity
Deposited dust	Annual	2g/m²/month**	4g/m²/month*	Amenity

Table 4-3: Particulate matter acquisition criteria
--

Source: NSW Government (2014)

*Cumulative impact (i.e. increase in concentration due to the development plus background concentrations due to all other sources).

**Incremental impact (i.e. increase in concentrations due to the development alone), with up to 5 allowable exceedances of the criteria over the life of the development.

4.3 Project approval criteria

The Stage 1 and 2 Project Approvals provide air quality performance criteria for the Moolarben Coal Complex.

Condition 17, Schedule 3 of Project Approval (05_0117) and Condition 18, Schedule 3 of Project Approval (08_0135) require that all reasonable and feasible avoidance and mitigation measures are employed so that particulate matter emissions generated by the Moolarben Coal Complex do not cause an exceedance of the criteria presented in Table 4-4, Table 4-5 and Table 4-6.

Table 4-4: Long ter	m impact assessment	criteria for	particulate matter
	in impact assessment		

Pollutant	Averaging period	^d Criterion
TSP	Annual	^a 90μg/m³
PM10	Annual	^а 30µg/m³

Source: Table 5 of Project Approval (05_0117) and Table 8 of Project Approval (08_0135)

Table 4-5: Short term impact assessment criterion for particulate matter

	Pollutant	Averaging period	^d Criterion
	PM10	24 hour	^а 50µg/m³
- 2			·

Source: Table 6 of Project Approval (05_0117) and Table 9 of Project Approval (08_0135)

Table 4-6: Long term impact assessment criteria for deposited dust					
Pollutant	Averaging period	Maximum increase in deposited dust level	Maximum total deposited dust level		
^c Deposited dust	Annual	^b 2g/m²/month	^a 4g/m ² /month		
	Annual	^b 2g/m²/month			

Source: Table 7 of Project Approval (05_0117) and Table 10 of Project Approval (08_0135)

^a Cumulative (i.e. incremental increase in concentrations due to the Moolarben Mine Complex plus background concentrations due to all other sources); ^b Incremental impact (i.e. incremental increase in concentrations due to the Moolarben Mine Complex on its own);

^c Deposited dust is to be assessed as insoluble solids as defined by Standards Australia, AS/NZS 3580,10,1:2003: Methods for Sampling and Analysis of Ambient Air – Determination of Particulate Matter – Deposited Matter – Gravimetric Method; and

^d Excludes extraordinary events such as bushfires, prescribed burning, dust storms, fire incidents, illegal activities or any other activity agreed by the Secretary

4.4 Environmental Protection Licence operating conditions

EPL 12932 provides qualitative operating conditions and monitoring requirements for air pollution at the Moolarben Coal Complex.

Condition O3 of EPL 12932 states:

O3 Dust

- O3.1 All areas in or on the premises must be maintained in a condition that prevents or minimises the emission into the air of air pollutants (which includes dust).
- O3.2 Any activity in or on the premises must be carried out by such practicable means as to prevent or minimise the emission into the air of air pollutants (which includes dust).
- O3.3 Any plant in or on the premises must be operated by such practicable means as to prevent or minimise the emission into the air or air pollutants (which includes dust).
- EPL 12932 does not provide any specific concentration limits relating to air pollution.

5 EXISTING ENVIRONMENT

This section describes the existing environment including the climate and ambient air quality in the area surrounding the Moolarben Coal Complex.

5.1 Local climate

Long term climatic data collected at the Bureau of Meteorology (BoM) weather station at Gulgong Post Office were analysed to characterise the local climate in the proximity of the Moolarben Coal Complex. The Gulgong Post Office is located approximately 25km southwest of the Moolarben Coal Complex and is the nearest BoM weather station with available long-term climate statistics.

Table 5-1 and **Figure 5-1** show climatic parameters that have been collected from the Gulgong Post Office over a 23 to 136 year period for the various meteorological parameters.

The data indicate that January is the hottest month with a mean maximum temperature of 31.0 degrees Celsius (°C) and July is the coldest month with a mean minimum temperature of 2.7°C.

Rainfall peaks during the summer months and declines during winter. The data show January is the wettest month with an average rainfall of 70.8 millimetres (mm) over 5.2 days and April is the driest month with an average rainfall of 43.9mm over 3.9 days.

Relative humidity levels exhibit variability over the day. Mean 9am relative humidity levels range from 61% in October to 84% in June and July. Mean 3pm relative humidity levels vary from 36% in December to 57% in June.

Wind speeds during the colder months tend to have a greater spread between the 9am and 3pm conditions compared to the warmer months. The mean 9am wind speeds range from 4.4 kilometres per hour (km/h) in June to 9.1km/h in October and November. The mean 3pm wind speeds vary from 7.8km/h in April to 11.7km/h in August.

Table 5-1: Monthly climate statistics summary – Gulgong Post Office												
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Ann.
Temperature												
31.0	29.9	27.4	23.4	19.1	15.4	14.7	16.5	19.8	23.6	26.8	29.7	23.1
16.8	16.3	13.8	9.8	6.3	3.7	2.7	3.4	6.1	9.2	12.3	14.9	9.6
70.8	61.1	55.2	43.9	45.1	51.2	49.4	46.0	47.4	55.4	59.7	67.4	652.8
5.2	4.8	4.6	3.9	4.8	6.0	6.1	5.7	5.3	5.6	5.5	5.5	63.0
21.7	20.6	18.9	15.8	11.3	7.7	6.7	8.5	12.6	16.5	18.3	20.8	15.0
64	71	71	70	79	84	84	76	70	61	63	62	71
8.2	6.7	6.2	5.9	5.0	4.4	4.9	6.1	7.7	9.1	9.1	8.9	6.9
3pm conditions												
29.5	28.4	26.2	22.3	18.0	14.3	13.5	15.3	18.5	22.1	25.1	28.2	21.8
37	42	41	42	49	57	54	46	44	40	39	36	44
9.6	8.5	7.9	7.8	9.0	8.8	9.9	11.7	11.4	11.5	11.4	11.2	9.9
	Jan 31.0 16.8 70.8 5.2 21.7 64 8.2 29.5 37	Jan Feb 31.0 29.9 16.8 16.3 70.8 61.1 5.2 4.8 21.7 20.6 64 71 8.2 6.7 29.5 28.4 37 42	Jan Feb Mar 31.0 29.9 27.4 16.8 16.3 13.8 70.8 61.1 55.2 5.2 4.8 4.6 70.8 61.1 55.2 5.2 4.8 4.6 70.8 61.1 55.2 5.2 4.8 4.6 70.8 61.1 55.2 5.2 4.8 4.6 70.8 61.1 55.2 21.7 20.6 18.9 64 71 71 8.2 6.7 6.2 29.5 28.4 26.2 37 42 41	Jan Feb Mar Apr 31.0 29.9 27.4 23.4 16.8 16.3 13.8 9.8 70.8 61.1 55.2 43.9 5.2 4.8 4.6 3.9 21.7 20.6 18.9 15.8 64 71 71 70 8.2 6.7 6.2 5.9 29.5 28.4 26.2 22.3 37 42 41 42	Jan Feb Mar Apr May 31.0 29.9 27.4 23.4 19.1 16.8 16.3 13.8 9.8 6.3 70.8 61.1 55.2 43.9 45.1 5.2 4.8 4.6 3.9 45.1 5.2 4.8 4.6 3.9 4.8 21.7 20.6 18.9 15.8 11.3 64 71 71 70 79 8.2 6.7 6.2 5.9 5.0 29.5 28.4 26.2 22.3 18.0 37 42 41 42 49	Jan Feb Mar Apr May Jun 31.0 29.9 27.4 23.4 19.1 15.4 16.8 16.3 13.8 9.8 6.3 3.7 70.8 61.1 55.2 43.9 45.1 51.2 5.2 4.8 4.6 3.9 4.8 6.0 21.7 20.6 18.9 15.8 11.3 7.7 64 71 71 70 79 84 8.2 6.7 6.2 5.9 5.0 4.4 29.5 28.4 26.2 22.3 18.0 14.3 37 42 41 42 49 57	Jan Feb Mar Apr May Jun Jul 31.0 29.9 27.4 23.4 19.1 15.4 14.7 16.8 16.3 13.8 9.8 6.3 3.7 2.7 70.8 61.1 55.2 43.9 45.1 51.2 49.4 5.2 4.8 4.6 3.9 4.8 6.0 6.1 21.7 20.6 18.9 15.8 11.3 7.7 6.7 64 71 71 70 79 84 84 8.2 6.7 6.2 5.9 5.0 4.4 4.9 29.5 28.4 26.2 22.3 18.0 14.3 13.5 37 42 41 42 49 57 54	Jan Feb Mar Apr May Jun Jul Aug 31.0 29.9 27.4 23.4 19.1 15.4 14.7 16.5 16.8 16.3 13.8 9.8 6.3 3.7 2.7 3.4 70.8 61.1 55.2 43.9 45.1 51.2 49.4 46.0 5.2 4.8 4.6 3.9 4.8 6.0 6.1 5.7 21.7 20.6 18.9 15.8 11.3 7.7 6.7 8.5 64 71 71 70 79 84 84 76 8.2 6.7 6.2 5.9 5.0 4.4 4.9 6.1 29.5 28.4 26.2 22.3 18.0 14.3 13.5 15.3 37 42 41 42 49 57 54 46	JanFebMarAprMayJunJulAugSep31.029.927.423.419.115.414.716.519.816.816.313.89.86.33.72.73.46.170.861.155.243.945.151.249.446.047.45.24.84.63.94.86.06.15.75.321.720.618.915.811.37.76.78.512.66471717079848476708.26.76.25.95.04.44.96.17.729.528.426.222.318.014.313.515.318.5374241424957544644	JanFebMarAprMayJunJulAugSepOct31.029.927.423.419.115.414.716.519.823.616.816.313.89.86.33.72.73.46.19.270.861.155.243.945.151.249.446.047.455.45.24.84.63.94.86.06.15.75.35.621.720.618.915.811.37.76.78.512.616.5647171707984847670618.26.76.25.95.04.44.96.17.79.129.528.426.222.318.014.313.515.318.522.137424142495754464440	JanFebMarAprMayJunJunJulAugSepOctNov31.029.927.423.419.115.414.716.519.823.626.816.816.313.89.86.33.72.73.46.19.212.370.861.155.243.945.151.249.446.047.455.459.75.24.84.63.94.86.06.15.75.35.65.521.720.618.915.811.37.76.78.512.616.518.364717170798484767061638.26.76.25.95.04.44.96.17.79.19.129.528.426.222.318.014.313.515.318.522.125.13742414249575446444039	JanFebMarAprMayJunJulAugSepOctNovDec31.029.927.423.419.115.414.716.519.823.626.829.716.816.313.89.86.33.72.73.46.19.212.314.970.861.155.243.945.151.249.446.047.455.459.767.45.24.84.63.94.86.06.15.75.35.65.55.521.720.618.915.811.37.76.78.512.616.518.320.86471717079848476706163628.26.76.25.95.04.44.96.17.79.19.18.929.528.426.222.318.014.313.515.318.522.125.128.2374241424957544644403936

Table 5-1: Monthly climate statistics summary – Gulgong Post Office

Source: Bureau of Meteorology (2017), accessed June 2017

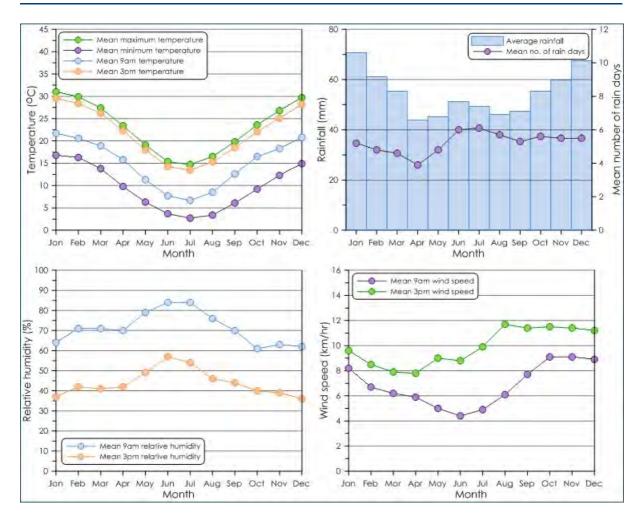
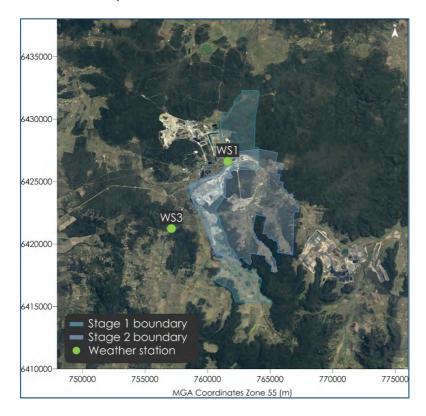
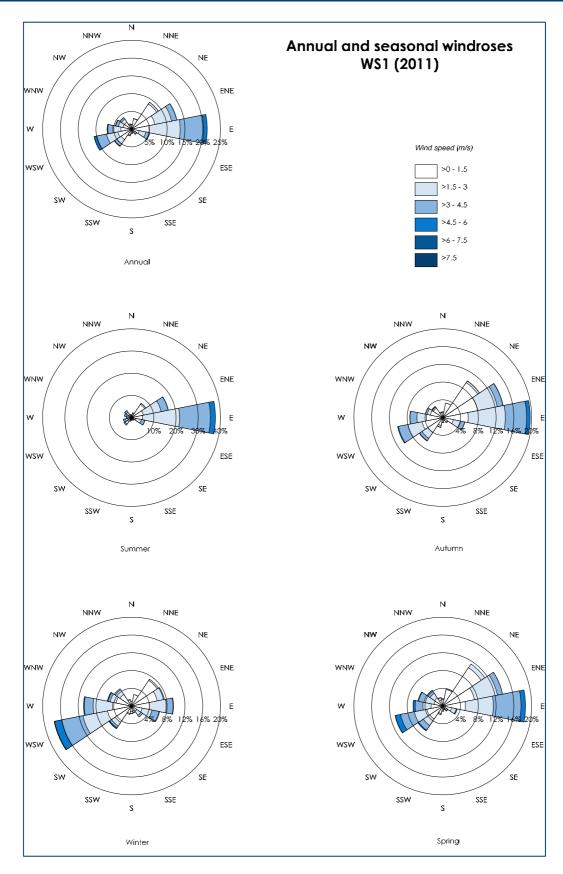


Figure 5-1: Monthly climate statistics summary – Gulgong Post Office

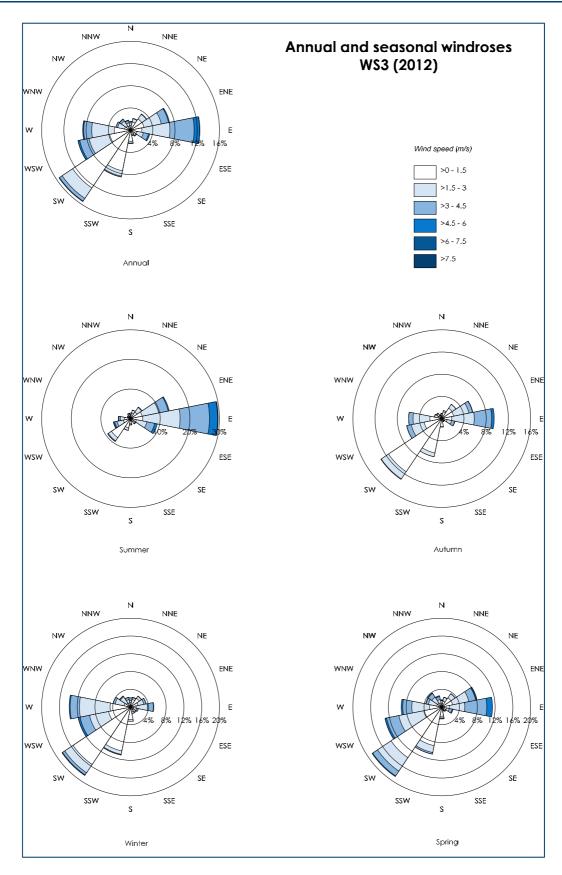
5.2 Local meteorological conditions

MCO operates a meteorological station (WS3) as required by EPL 12932, with an additional station (WS1) used to supplement data when required. The location of these stations are shown in **Figure 5-2**.




Figure 5-2: MCO weather station locations

Annual and seasonal windroses prepared from the available data collected for the 2011 calendar period for WS1 are presented in **Figure 5-3**. WS3 was commissioned in late 2011 with data only available from September 2011. Annual and seasonal windroses prepared from the available data collected for the 2012 calendar period for WS3 are presented in **Figure 5-4** for comparison to the WS1 data.


Analysis of the windroses from the two weather stations indicates very similar patterns with winds generally flowing along an east-west axis on an annual basis and very few winds from the north and south directions. The location of WS3 is subject to a high portion of drainage flows compared to WS1 as indicated by the light winds from the southwest.

In summer the winds predominately occur from the east. The autumn and spring wind distributions shows similarities with predominant winds from the east and progressively lighter winds originating from the east-northeast to the northeast. During winter, the dominant winds arise from the west-southwest and west. In all seasons, WS3 records a high percentage of low wind speed winds from the southwest.

Windroses for the 2013 to 2016 periods for WS3 are presented in **Appendix B**. A review of the annual windroses indicate similar wind patterns.

5.3 Local air quality monitoring

The main sources of particulate matter in the wider area include active mining, agricultural activities, emissions from local anthropogenic activities such as motor vehicle exhaust and domestic wood heaters, urban activity and various other commercial and industrial activities.

This section reviews the ambient monitoring data collected from a number of ambient monitoring locations in the vicinity of the Moolarben Coal Complex. The monitoring data reviewed in this assessment include data collected at six Tapered Element Oscillating Microbalances (TEOMs) measuring PM₁₀, two High Volume Air Samplers (HVAS) measuring PM₁₀ and 13 dust deposition gauges measuring dust fallout.

Figure 5-5 shows the approximate location of each of the monitoring stations reviewed in this assessment.

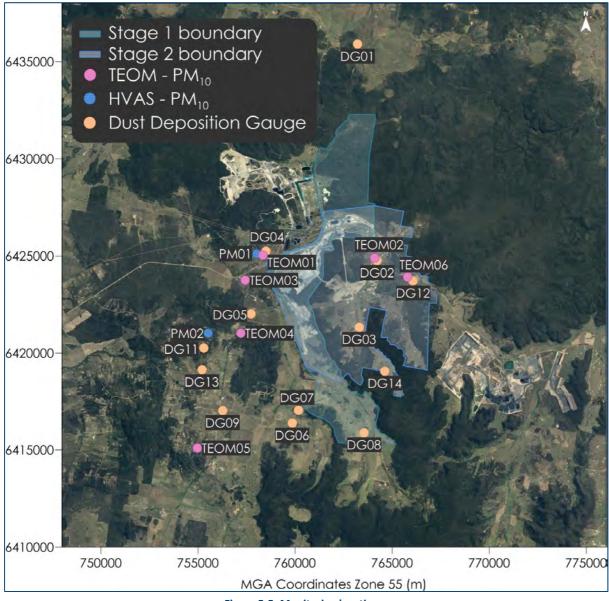


Figure 5-5: Monitoring locations

5.3.1 TEOM monitoring

A summary of the available ambient TEOM PM₁₀ monitoring data is presented in **Table 5-2**. Recorded 24-hour average PM₁₀ concentrations are presented in **Figure 5-6**.

The monitoring data in **Table 5-2** include all emission sources in the general vicinity of the Moolarben Coal Complex. Where TEOM datasets are less than 75% complete for the annual period, they have not been included in the annual average analysis. The annual average PM_{10} concentrations for the monitoring stations were below the relevant criterion of $25\mu g/m^3$ for the period review.

	bie 5-2: Summary						
Station ID	2011	2012	2013	2014	2015	2016	
Annual average							
TEOM 01	10.3	11.3	12.7	14.0	12.5	13.1	
TEOM 02 ⁽¹⁾	9.3	10.3	12.4	11.2	-	-	
TEOM 03 ⁽²⁾	-	-	-	-	-	-	
TEOM 04 ⁽³⁾	-	9.0	10.8	12.8	9.0	11.7	
TEOM 05 ⁽⁴⁾	-	-	-	10.8	8.7	8.5	
TEOM 06 ⁽⁵⁾	-	-	-	-	-	11.2	
		Maximum 2	4-hour average				
TEOM 01	31	41	47	56	64	42	
TEOM 02 ⁽¹⁾	26	42	60	54	107	-	
TEOM 03 ⁽²⁾	46	-	-	-	-	-	
TEOM 04 ⁽³⁾	26	42	45	130	63	38	
TEOM 05 ⁽⁴⁾	-	-	40	65	86	32	
TEOM 06 ⁽⁵⁾	-	-	-	-	39	71	
		Number of	days >50µg/m³				
TEOM 01	-	-	-	3	2	-	
TEOM 02 ⁽¹⁾	-	-	1	2	3	-	
TEOM 03 ⁽²⁾	-	-	-	-	-	-	
TEOM 04 ⁽³⁾	0	0	0	10	1	0	
TEOM 05 ⁽⁴⁾	-	-	-	4	1	-	
TEOM 06 ⁽⁵⁾	-	-	-	-	0	2	

Table 5-2: Summary of TEOM PM₁₀ levels MCO monitoring stations (µg/m³)

⁽¹⁾ Data available till July 2015 then relocated and renamed TEOM 06.

⁽²⁾ Data available till July 2011 then relocated and renamed TEOM 04.

⁽³⁾ Data available from September 2011.

⁽⁴⁾ Data available from December 2013.

⁽⁵⁾ Data available from August 2015.

The maximum 24-hour average PM_{10} concentrations (see **Figure 5-6**) recorded at the MCO TEOM monitors were above the relevant criterion of $50\mu g/m^3$ on a number of occasions during the review period.

Most notable were the elevated levels occurring at all the TEOM monitors during January 2014. A review of the Annual Environmental Management Report for the period (**Moolarben Coal Operations, 2015a**) indicates a visible smoke haze associated with a bushfire as well as road works occurring adjacent to the TEOM 04 as a likely source of the elevated levels.

The exceedance in 2013 was attributed to smoke haze in the surrounding area. Exceedances in 2015 were related to road works undertaken near the relevant monitors and one regional dust event. Two exceedances were recorded in 2016 at TEOM06 and were attributed to hazard reduction burns in the Goulburn River National Park.

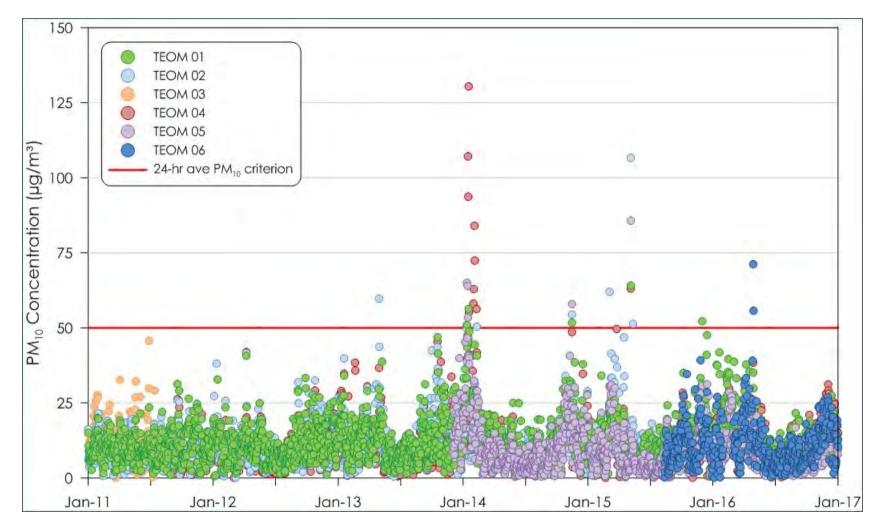


Figure 5-6: TEOM 24-hour average PM₁₀ concentrations at MCO TEOM monitors

5.3.2 HVAS monitoring

A summary of the available HVAS PM_{10} monitoring data collected between January 2011 and December 2016 is shown in **Table 5-3**. Recorded 24-hour average PM_{10} concentrations are presented in **Figure 5-7**.

The monitoring data presented in **Table 5-3** indicate that the annual average PM_{10} concentrations for the monitoring stations are well below the criterion of $25\mu g/m^3$. **Figure 5-7** shows that the recorded 24-hour average PM_{10} concentrations follow a seasonal trend with concentrations nominally highest in the spring and summer months with the warmer weather raising the potential for drier ground elevating windblown dust, pollen levels and the occurrence of bushfires.

Year	Annual average				
i cai	PM 01	PM 02			
2011	12.4	10.5			
2012	11.8	9.6			
2013	12.2	10.0			
2014	13.8	11.7			
2015	13.2	10.8			
2016	12.3	10.4			

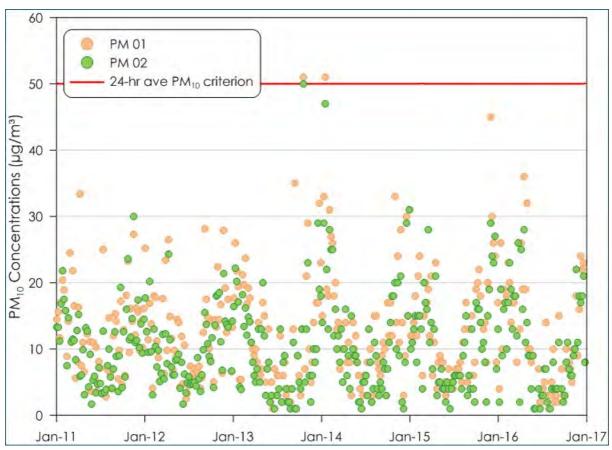


Figure 5-7: HVAS 24-hour average PM₁₀ concentrations

5.3.3 Dust deposition monitoring

Table 5-4 summarises the annual average deposition levels at each gauge during 2011 to 2016.

All gauges recorded an annual average insoluble deposition level below the criterion of 4g/m²/month.

Dust gauge	2011	2012	2013	2014	2015	2016
DG01	0.4	0.3	0.5	0.8	0.6	0.5
DG04	1.6	1.3	1.3	1.6	1	1.2
DG05	1.5	0.8	1	2	0.8	1.3
DG06	0.6	0.4	0.7	1	0.6	0.6
DG07	0.7	0.8	1	0.9	0.9	0.9
DG08	0.8	0.7	0.7	0.8	0.6	0.7
DG09	0.5	0.4	0.7	2	0.6	0.6
DG11	-	-	0.6	0.8	0.6	0.7
DG12	-	-	-	-	1.5	1
DG13	-	-	-	-	0.7	0.7

Table 5-4: Annual average dust deposition (g/m²/month)

6 DISPERSION MODELLING APPROACH

6.1 Modelling scenarios

This assessment considers three mine plan years (scenarios) to represent the proposed Modification over the life of the mine, Year 2019, Year 2021 and Year 2026. The scenarios chosen represent potential worst-case impacts in regard to the quantity of material extracted in each year, the location of the operations and the potential to generate dust impacts at the sensitive receptor locations.

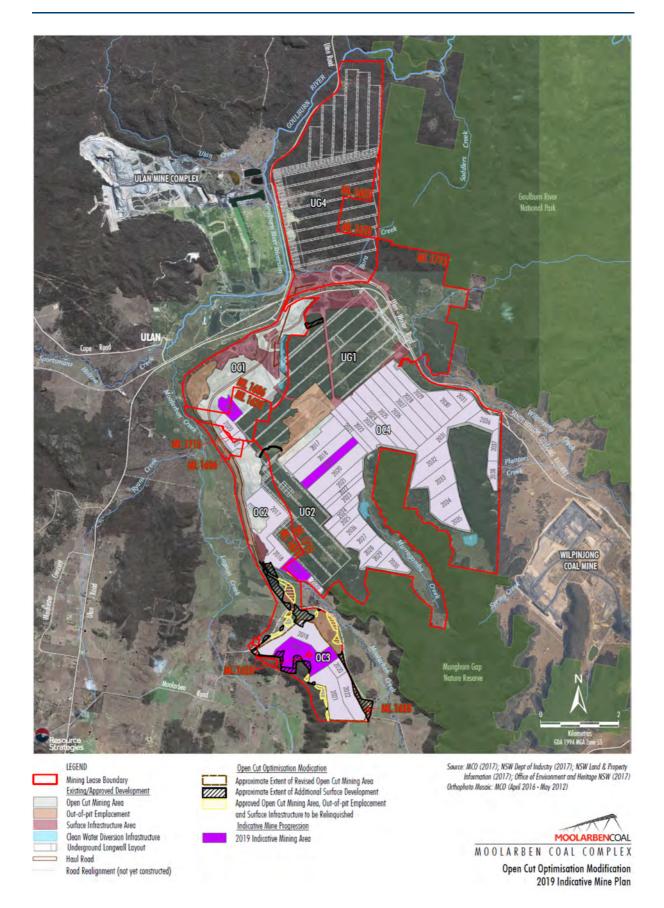
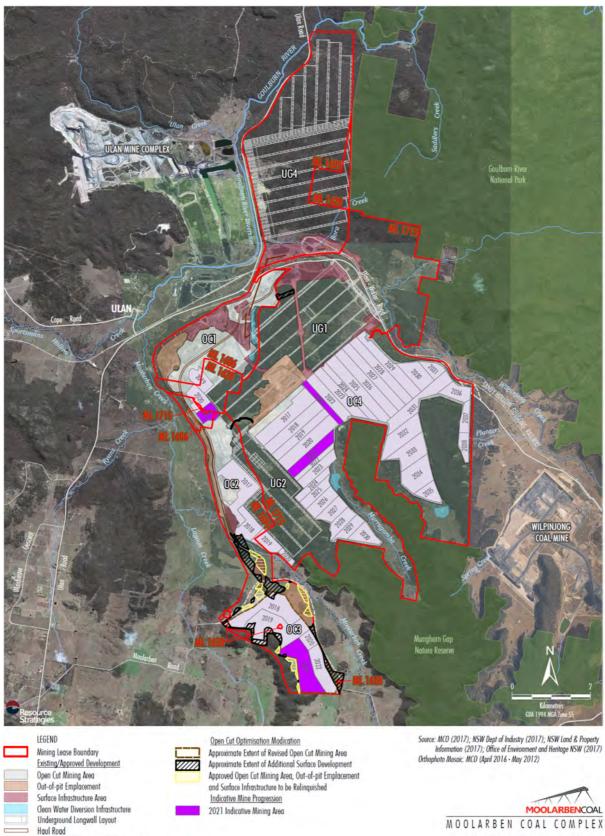
Mining operations would consist of a drill and blast, truck, shovel and dozer operation to remove overburden material and extract the coal resources. Overburden emplacement would typically occur behind the progression of the mine extraction with rehabilitation of emplacement areas progressing as they are completed. The active mining areas and exposed areas are to be kept to a minimum for the efficiency of the operation and this also has a positive effect in minimising the potential amount of dust levels generated from the operations.

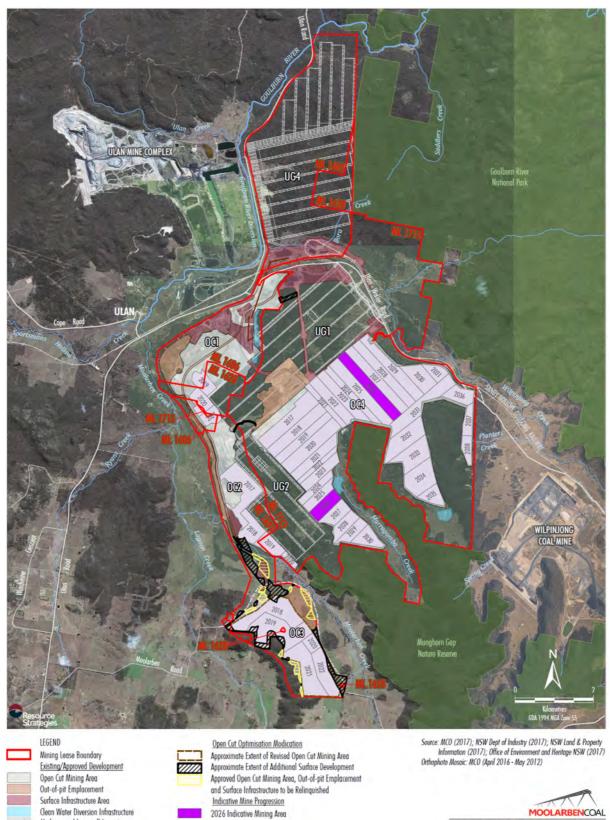
Indicative mine plans for each of the assessed scenarios are presented in Figure 6-1 to Figure 6-3.

During Year 2019 (see **Figure 6-1**), all four open cut pits are in operation at the proposed maximum combined Stage 1 and 2 open cut mining rate of 16Mtpa. ROM coal is transported to the Coal Handling and Preparation Plant (CHPP) by haul truck from OC1, OC2 and OC3 with a conveyor used to deliver ROM coal from OC4. The total combined ROM from the open cut (16Mtpa) and underground operations (6Mtpa) is 22Mtpa and the total product coal is at 19Mtpa.

In Year 2021 (see **Figure 6-2**), operations in OC2 have been completed. Mining operations continue in the other open cuts at the proposed maximum rate of 10Mtpa from the Stage 1 open cuts and combined Stage 1 and 2 open cut mining rate of 16Mtpa. The total combined ROM from the open cut (16Mtpa) and underground (8Mtpa) operations is at the proposed maximum of 24Mtpa, and the total product coal is at 21Mtpa.

For Year 2026 (see **Figure 6-3**), OC4 is the only operational open cut and is operating at the proposed maximum rate of 16Mtpa. The total combined ROM from the open cut (16Mtpa) and underground (6Mtpa) operations is 22Mtpa and the total product coal is at 20Mtpa.


Figure 6-1: Indicative mine plan for 2019

Road Realignment (not yet constructed)

MOOLARBEN COAL COMPLEX **Open Cut Optimisation Modification** 2021 Indicative Mine Plan

Figure 6-2: Indicative mine plan for 2021

MOOLARBEN COAL COMPLEX Open Cut Optimisation Modification 2026 Indicative Mine Plan

Figure 6-3: Indicative mine plan for 2026

Underground Longwall Layout

Road Realignment (not yet constructed)

Haul Road

6.2 Emissions estimation

For the modelled scenario, dust emission estimates have been calculated by analysing the various types of dust generating activities taking place and utilising suitable emission factors.

The emission factors were sourced from both locally developed and United States Environmental Protection Agency (US EPA) developed documentation. Total dust emissions from all significant dust generating activities for the project are presented in **Table 6-1**. Detailed emission inventories and emission estimation calculations are presented in **Appendix C**.

The estimated emissions presented in **Table 6-1** are commensurate with a mining operation utilising reasonable and feasible best practice dust mitigation applied where applicable. Further details on the dust control measures applied for the Moolarben Coal Complex are outlined in **Section 6.3**. Where relevant, mitigation measures have been incorporated in the emissions estimations including those identified in the EPL 12932 Coal Mine Particulate Matter Control Best Practice Pollution Reduction Scheme.

	2019	2021	2026
Overburden			
OB - Stripping Topsoil - OC1	1,356	1,290	-
OB - Stripping Topsoil - OC2	1,472	-	-
OB - Stripping Topsoil - OC3	1,419	1,470	-
OB - Stripping Topsoil - OC4	2,053	3,540	6,300
OB - Drilling - OC1	1,304	1,155	-
OB - Drilling - OC2	1,415	-	-
OB - Drilling - OC3	1,364	1,316	-
OB - Drilling - OC4	3,291	4,351	8,184
OB - Blasting - OC1	11,953	10,582	-
OB - Blasting - OC2	12,972	-	-
OB - Blasting - OC3	12,502	12,057	-
OB - Blasting - OC4	30,157	39,874	75,010
OB - Excavator loading OB to haul truck - OC1	23,153	20,496	-
OB - Excavator loading OB to haul truck - OC2	25,126	-	-
OB - Excavator loading OB to haul truck - OC3	24,215	23,355	-
OB - Excavator loading OB to haul truck - OC4	35,048	56,226	105,337
OB - Excavator rehandle - OC1	-	512	-
OB - Excavator rehandle - OC3	-	584	-
OB - Excavator rehandle - OC4	1,168	1,699	3,196
OB - Hauling to dump - OC1 (OC1 void)	169,248	-	-
OB - Hauling to dump - OC1 (OC1 dump)	82,586	146,817	-
OB - Hauling to dump - OC2	179,250	-	-
OB - Hauling to dump - OC3	104,773	101,727	-
OB - Hauling to dump - OC4 (930 E)	64,424	101,353	137,761
OB - Hauling to dump - OC4 (830 E)	149,614	221,105	304,955
OB - Hauling to dump - OC4 (830 E) (south)	-	-	203,303
OB - Emplacing at dump - OC1 (OC1 void)	11,576	-	-
OB - Emplacing at dump - OC1 (OC1 dump)	11,576	20,496	-
OB - Emplacing at dump - OC2	25,126	-	-
OB - Emplacing at dump - OC3	24,215	23,355	-
OB - Emplacing at dump - OC4	35,048	56,226	105,337
OB - Dozers on OB (dump and pit) - OC1	-	134,636	-
OB - Dozers on OB (dump and pit) - OC2	309,620	-	-
OB - Dozers on OB (dump and pit) - OC3	155,689	149,664	-
OB - Dozers on OB (dump and pit) - OC4	681,262	844,749	1,110,055
Coal			

Table 6-1: Estimated emission for the proposed modification (kg of TSP)

ACTIVITY	2019	2021	2026
CL - Drilling - OC1	39	82	-
CL - Drilling - OC2	106	-	-
CL - Drilling - OC3	92	218	-
CL - Drilling - OC4	243	176	480
CL - Blasting - OC1	3,234	6,831	-
CL - Blasting - OC2	8,841	-	-
CL - Blasting - OC3	7,625	18,086	-
CL - Blasting - OC4	20,168	14,577	39,867
CL - Dozers ripping/pushing/clean-up - OC1	7,756	17,232	-
CL - Dozers ripping/pushing/clean-up - OC2	20,573	-	-
CL - Dozers ripping/pushing/clean-up - OC3	17,742	45,633	-
CL - Dozers ripping/pushing/clean-up - OC4	48,400	36,776	116,727
CL - Loading ROM coal to haul truck - OC1	68,160	143,987	-
CL - Loading ROM coal to haul truck - OC2	186,352	-	-
CL - Loading ROM coal to haul truck - OC3	160,734	381,244	_
CL - Loading ROM coal to haul truck - OC4	425,123	307,275	840,369
CL - Hauling ROM to hopper - OC1	28,508	79,588	-
CL - Hauling ROM to hopper - OC2	154,950	-	_
CL - Hauling ROM to hopper - OC3	198,410	476,588	_
CL - Hauling ROM to hopper - OC4	100,949	87,310	278,086
CL - Unload to hopper or stockpile (OC1, OC2, OC3)	207,623	236,354	
CL - Unload to hopper or stockpile (OC4)	212,562	153,637	420,184
CL - Rehandling - (OC1 + OC2 + OC3) - at hopper	110,621	125,929	420,184
CL - Rehandling - OC4 - at hopper	113,253	81,858	111,937
CHPP - Transfer to Sizing Station (OC4)	1,370	990	2,708
Bypass	1,570	330	2,708
		169	-
CL - bypass - direct dumping at bypass stockpile (OC1 + OC3) CL - bypass - conveying to bypass stockpile (OC4) (1 transfer point)	-		
	-	205	1,124
CL - bypass - discharge to bypass stockpile (OC4) CL - bypass - transfer station (OC)	-	205 374	1,124
	-		1,124
CL - bypass - bypass coal sizing station	-	5,967	17,924
CL - bypass - OC bypass coal conveyed to product stockpile	-	376	376
CL - bypass - bypass coal conveyed to TLO (3 transfer points)	-	1,122	3,371
Open Cut	450	450	
CHPP - Conveying to Sizing Station (OC1+OC2+OC3)	158	158	-
CHPP - Transfer to Sizing Station (OC4)	-	785	1,585
CHPP - Sizing Station (OC1+OC2+OC3+OC4)	43,200	36,829	25,276
CHPP - Conveying to CHPP (OC)	39	39	39
CHPP - Washing (OC)	-	-	-
CHPP - Conveying to CHPP Product Stockpile (OC)	208	208	208
CHPP - Unloading to CHPP Product Stockpile (OC)	1,393	1,195	801
CHPP - Reclaim and Conveying to TLO (3 transfer points)	4,179	4,321	4,616
Underground			
CHPP - Conveyor transfer point at UG portal entrance	310	310	310
CHPP - Conveyor to UG1 pit top	386	386	386
CHPP - Unload to ROM stockpile	1,024	1,354	1,354
CHPP - Transfer to sizing station (at product coal stockpile area)	1,024	1,354	1,354
CHPP - Unload to product stockpile	1,024	1,354	1,354
CHPP - Reclaim and conveyor to TLO (3 transfer points)	3,072	4,062	4,062
Dozers			
CHPP - Dozer pushing ROM coal at UG1 pit top	27,746	36,694	27,063
CHPP - Dozer pushing ROM coal (bypass) at product stockpile	37,517	13,712	41,173
CHPP - Dozer pushing Product coal	59,526	51,069	34,312
CHPP - Dozer pushing bypass (UG + OC) Product coal		48,452	59,498
Rejects			
CHPP - Conveying rejects from CHPP to loadout	183	183	183
CHPP - Loading rejects	145	121	90
CHPP - Hauling rejects	126,674	114,889	68,714
CHPP - Unloading rejects	145	121	90

TODOROSKI AIR SCIENCES | info@airsciences.com.au | O2 9874 2123

ACTIVITY	2019	2021	2026
Wind Erosion			
OC1 - Active mining area (pit, active dumping area) (OC1 void)	8,713	-	-
OC1 - Active mining area (pit, active dumping area) (OC1)	51,502	31,152	-
OC1 - Inactive area (no rehabilitation) (OC1 north)	4,977	-	-
OC1 - Inactive area (no rehabilitation) (OC1 south)	5,576	4,977	-
OC1 - Partially rehabilitated (e.g. stable and seeded) (OC1 north)	-	2,614	3,118
OC1 - Partially rehabilitated (e.g. stable and seeded)	12,123	19,502	
OC1 - Hard Stand Areas (Workshops, roads, conveyors etc)	105,239	85,179	94,952
OC2 - Active mining area (pit, active dumping area)	51,170	-	-
OC2 - Inactive area (no rehabilitation)	1,216	1,216	-
OC2 - Partially rehabilitated (e.g. stable and seeded)	21,224	-	-
OC2 - Hard Stand Areas (Workshops, roads, conveyors etc)	17,850	17,850	17,851
OC3 - Active mining area (pit, active dumping area)	120,318	110,475	-
OC3 - Inactive area (no rehabilitation)	-	-	-
OC3 - Partially rehabilitated (e.g. stable and seeded)	16,111	44,602	-
OC3 - Hard Stand Areas (Workshops, roads, conveyors etc)	31,969	31,969	-
OC4 - Active mining area (pit, active dumping area)	168,904	129,421	156,671
OC4 - Active mining area (pit, active dumping area) (OC4 south)	-	-	112,024
OC4 - Inactive area (no rehabilitation)	16,970	16,635	-
OC4 - Partially rehabilitated (e.g. stable and seeded)	18,202	32,449	41,005
OC4 - Hard Stand Areas (Workshops, roads, conveyors etc)	28,968	29,589	18,343
Stockpile - ROM coal stockpile (OC1)	3,107	3,107	3,105
Stockpile - ROM coal stockpile (UG)	769	769	768
Stockpile - ROM coal stockpile (OC3)	1,471	1,471	-
Stockpile - ROM coal stockpile (OC4)	3,336	3,336	3,953
Stockpile - Bypass Coal Stockpile	-	5,143	5,143
Stockpile - Product Coal Stockpile	2,384	4,526	2,383
Grading roads	141,796	141,796	141,796
Total TSP emissions (kg/yr)	5,439,254	5,236,797	4,768,420

6.2.1 Emissions from other mining operations

In addition to the estimated dust emissions from the proposed modification, emissions from all nearby approved mining operations were also modelled, in accordance with their current consent (or current proposed project), to assess potential cumulative dust effects.

Emissions estimates from these sources were derived from information provided in the air quality assessments available in the public domain at the time of modelling. These estimates are likely to be conservative, as in many cases, mines do not continually operate at the maximum extraction rates assessed in their respective environmental assessments. **Table 6-2** summarises the emissions adopted in this assessment for each of the nearby mining operations.

Mining operation	2019	2021	2026
Ulan Coal Mine ⁽¹⁾	2,322,489	1,283,404	1,280,276
Wilpinjong Coal Mine ⁽²⁾	6,874,251	6,342,619	5,033,886

⁽¹⁾ PAEHolmes (2009)

(2) Todoroski Air Sciences (2015b)

6.3 Existing air quality monitoring and management

The existing Air Quality Management Plan (**Moolarben Coal Operations, 2015c**) describes the air quality management and monitoring regime at the Moolarben Coal Complex.

The existing Air Quality Management Plan (Moolarben Coal Operations, 2015c) describes:

- Project Approval air quality criteria;
- + Air quality monitoring locations and frequency, comprising:
 - Four TEOMs measuring PM₁₀ continuously (i.e. real-time monitor);
 - Two HVAS measuring PM₁₀ on a one day in six cycle; and
 - Eleven dust deposition gauges;
- Ongoing dust management measures; and
- Performance indicators (real-time response triggers) which, if certain thresholds are reached, trigger the implementation of additional dust management measures.

Operational air quality management measures used at the Moolarben Coal Complex include the implementation of best practice management techniques to proactively reduce dust (as described in the EPL 12932 Coal Mine Particulate Matter Control Best Practice Pollution Reduction Scheme), and reactive measures such as enforcing a cessation of particular operations during unfavourable conditions.

MCO has implemented a comprehensive air quality management system that assists in pro-active management of dust emissions. The system provides daily reports and predictions of upcoming meteorological conditions and potential dust risks. Based on prevailing wind conditions, MCO can strategically alter its operations to reduce these impacts.

Real-time air quality monitoring is used by MCO to provide notification of dust levels in the surrounding environment and at locations representative of receptor locations. When certain thresholds are reached, indicating excessive ambient dust levels, MCO is able to take action to minimise the generation of dust emissions before there is any significant effect at the receptor locations.

6.4 Modelling methodology

The dispersion modelling methodology applied in this assessment is the same as that applied in the MOD9, OC4 South-West MOD and UG1 MOD assessments using the CALPUFF modelling suite.

The CALMET meteorological modelling has been revised to incorporate the changes to the local mine terrain for the proposed modelling scenario which affect the local wind flows of the area (e.g. to account for the updated sequencing of the open cut pits). This assessment used the same meteorological conditions assessed in the MOD9 assessment which were based on data for January 2011 to December 2011 from six surrounding monitoring sites.

Dust emissions from each activity were represented by a series of volume sources and included in the CALPUFF model via an hourly varying emission file. Meteorological conditions associated with dust generation (such as wind speed) and levels of dust generating activity were considered in calculating the hourly varying emission rate for each source.

It should be noted that as a conservative measure, the effect of the precipitation rate (rainfall) in reducing dust emissions has not been considered in this assessment.

7 DISPERSION MODELLING RESULTS

The dispersion model predictions for each of the assessed scenarios are presented in this section. The results presented include those for the operation in isolation (incremental impact) and the operation with other sources (total (cumulative) impact). The results show the estimated:

- Maximum 24 hour average PM_{2.5} and PM₁₀ concentrations;
- + Annual average PM_{2.5} and PM₁₀ concentrations;
- Annual average TSP concentrations; and,
- + Annual average dust (insoluble solids) deposition rates.

It is important to note that when assessing impacts per the maximum 24-hour average $PM_{2.5}$ and PM_{10} criteria, the predictions show the highest predicted 24-hour average concentrations that were modelled at each point within the modelling domain for the worst day (a 24-hour period) in the one year long modelling period. When assessing the total (cumulative) 24-hour average impacts based on model predictions, challenges arise with identification and quantification of emissions from non-modelled sources over the 24-hour period. Due to these factors, the 24-hour average impacts need to be calculated differently to annual averages and as such, the predicted total (cumulative) impacts for maximum 24-hour average $PM_{2.5}$ and PM_{10} concentrations have been addressed specifically in **Section 7.3.**

Each of the sensitive receptors shown in **Figure 3-2** and detailed in **Appendix A** were assessed individually as discrete receptors with the predicted results presented in tabular form for each of the assessed scenarios in **Appendix D**.

Associated isopleth diagrams of the dispersion modelling results are presented in Appendix E.

To account for sources not explicitly included in the model, and to fully account for all cumulative dust levels, the unaccounted fractions of background dust levels (which arise from the other non-modelled sources), were added to the annual average model predictions.

The contribution of background dust levels was estimated by modelling the past (known) mining activities during 2011 and comparing model predictions with the actual measured data from the corresponding monitoring stations. The average difference between the measured and predicted PM₁₀, TSP and deposited dust levels from each of the monitoring points was considered to be the contribution from other non-modelled dust sources.

In this case, the estimated background levels for TSP, PM_{10} and deposited dust are identical to the levels applied in the MOD9 assessment (**Todoroski Air Sciences, 2013**). **Table 7-1** outlines the estimated annual average contribution from other non-modelled dust sources for the area surrounding the Moolarben Coal Complex incorporating the Modification.

Pollutant	Background level	Unit
TSP	13.5	µg/m³
PM ₁₀	5.4	µg/m³
Dust deposition	0.6	µg/m³

Table 7-1: Estimated annual average contribution from other non-modelled dust sources

In the absence of available $PM_{2.5}$ monitoring data for the area, the background levels applied in the recent air quality assessment for the Wilpinjong Coal Mine (**Todoroski Air Sciences, 2015b**) are considered appropriate with a background $PM_{2.5}$ level of $4.3\mu g/m^3$.

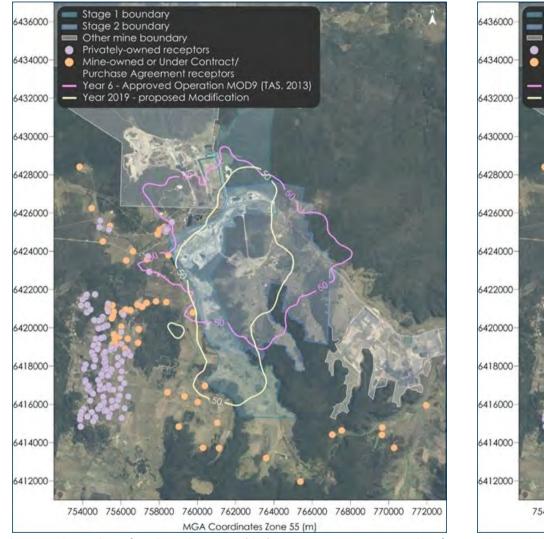
7.1 Summary of modelling predictions (incremental Project-only impacts)

No exceedances of the criteria for PM_{2.5}, PM₁₀, TSP or dust deposition are predicted at any privatelyowned receptor due to emissions from the Moolarben Coal Complex incorporating the Modification.

Table 7-2 summarises the sensitive receptor locations where impacts are predicted to exceed relevant assessment criteria. The receptor locations highlighted in grey are identified as mine-owned or Under Contract/ Purchase Agreement receptors.

Cumulative 24-hour PM_{2.5} and PM₁₀ impacts are assessed specifically in Section 7.3.

 Table 7-2: Summary of modelled predictions for the Moolarben Coal Complex including the Modification where predicted impacts exceed assessment criteria


		PM _{2.5}		PM ₁₀	PM10	TSP	D	D				
tor ID	Ownership	Total annual average	24	Project -hour average	Total annu	ial average	Project annual average	Total annual average				
Receptor		NEPM		Criterion	Criterion	Criterion	Criterion	Criterion				
Re	Property	8µg/m³		50µg/m³	25µg/m³	90µg/m³	2g/m²/mth	4g/m²/mth				
	Pro	Year of imp	act (level of	No. of down > 50 um/m3	Year of imp	act (level of	Year of impact					
		impact	- μg/m³)	No. of days >50µg/m ³	impact ·	- μg/m³)	(level of impact - g/m²/mth)					
-	MCO	2019 (9)			2019 (27)							
5	мсо	2019 (9) 2021 (8)	2021 (54)	1	2019 (27) 2021 (27)	-	-	-				
5	мсо мсо	. ,	2021 (54) 2019 (103)	1 70	. ,	-	-	-				

7.2 Comparison of modelling predictions

To show the effect of the Modification relative to the historically approved operations, the key results (maximum 24-hour average and cumulative annual average PM₁₀) for each scenario have been overlayed with results for the nearest corresponding year from the MOD9 assessment (**Todoroski Air Sciences, 2013**) in **Figure 7-1** to **Figure 7-6**.

While there is some variation in the shape of the contours between the modelled years compared, this is largely attributed to the revised staging of operations, the location of activity and also recent approved modifications to other mining operations (i.e. Wilpinjong Coal Mine during Year 2026).

Overall, the comparisons indicate that the predicted dust levels associated with the Modification would be of a generally similar extent to the previously approved operations.

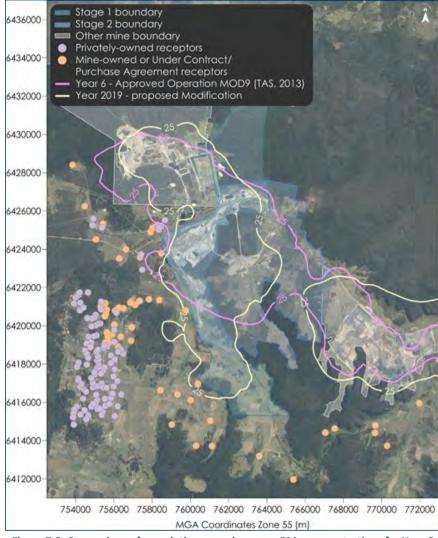
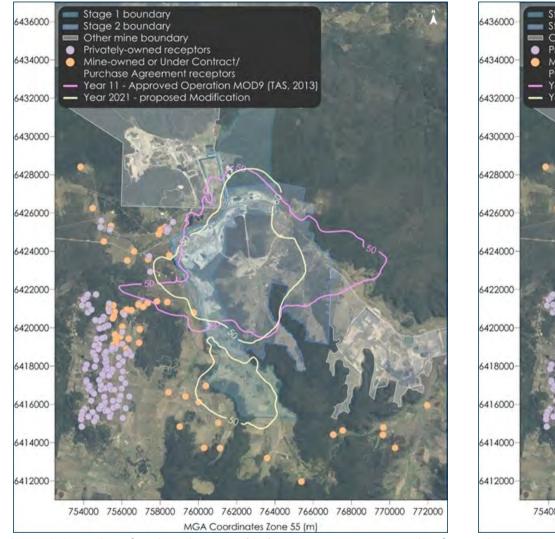



Figure 7-2: Comparison of cumulative annual average PM₁₀ concentrations for Year 6 (previously assessed – MOD9) and Year 2019 (the Modification) (μg/m³)

TODOROSKI AIR SCIENCES | info@airsciences.com.au | 02 9874 2123

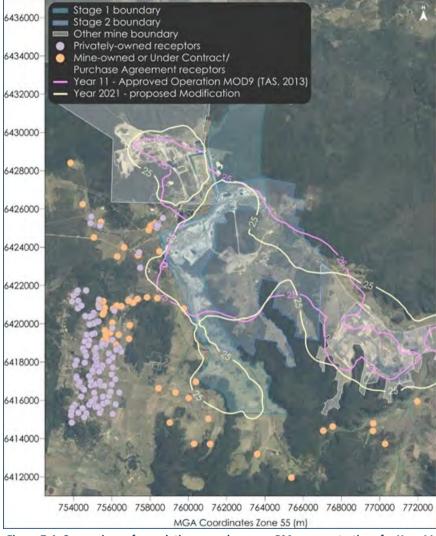
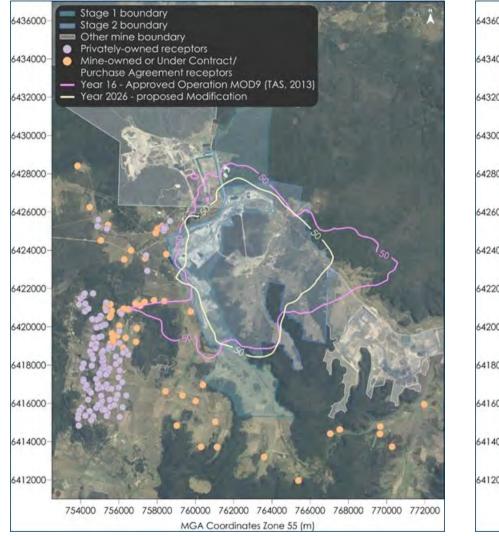



Figure 7-4: Comparison of cumulative annual average PM₁₀ concentrations for Year 11 (previously assessed) and Year 2021 (the Modification) (μg/m³)

TODOROSKI AIR SCIENCES | info@airsciences.com.au | 02 9874 2123

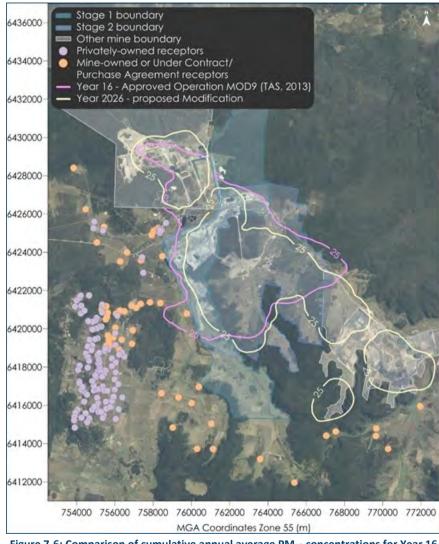


Figure 7-6: Comparison of cumulative annual average PM_{10} concentrations for Year 16 (previously assessed) and Year 2026 (the Modification) ($\mu g/m^3$)

TODOROSKI AIR SCIENCES | info@airsciences.com.au | O2 9874 2123

7.3 Assessment of total (cumulative) 24-hour average PM_{2.5} and PM₁₀ concentrations

Cumulative 24-hour average $PM_{2.5}$ and PM_{10} impacts are focused on the closest and most potentially impacted privately-owned receptor locations.

Three PM₁₀ monitoring stations operated by MCO where suitable ambient monitoring data are available over the contemporaneous modelling period have been chosen to be representative of the privately-owned receptor locations. **Figure 7-7** shows the location of each of these monitors in relation to the Modification and the privately-owned receptor locations assessed.

As there are no readily available ambient PM_{2.5} monitoring data collected near to the Moolarben Coal Complex, monitoring data from the NSW Office of Environment and Heritage (OEH) monitoring stations at Muswellbrook and Singleton have been applied for the assessment.

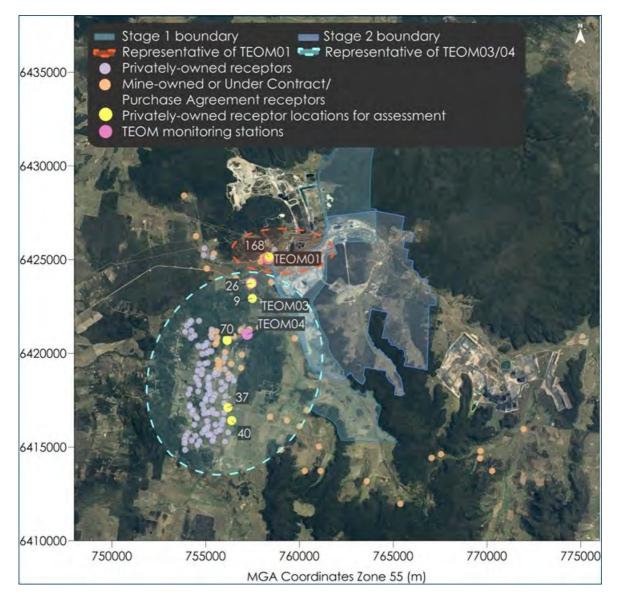


Figure 7-7: Locations available for contemporaneous cumulative impact assessment

7.3.1 Assessment of cumulative PM_{2.5} impacts

To assess the potential cumulative 24-hour average $PM_{2.5}$ impacts due to the Modification, the Victorian EPA approach² with the available ambient $PM_{2.5}$ monitoring data from the NSW OEH monitoring stations at Muswellbrook and Singleton during 2011 has been applied.

This approach is considered suitable for this assessment in the absence of readily available ambient PM_{2.5} monitoring data for the Modification. The monitoring data from Muswellbrook and Singleton monitoring stations are representative of a more densely populated area with greater influences of anthropogenic sources compared to the area surrounding the Moolarben Coal Complex. The monitoring data therefore would provide a conservative assessment of potential cumulative impacts for the area surrounding the Modification.

The 70th percentile of the measured Muswellbrook and Singleton $PM_{2.5}$ monitoring data during 2011 is 10.5µg/m³ and 8.5µg/m³, respectively and the average of the 70th percentile levels, 9.5µg/m³ is considered for the cumulative assessment.

The results of the cumulative assessment are presented in **Table 7-3** for each of the assessed receptors. The results indicate that the predicted cumulative impact would not exceed the relevant criterion of $25\mu g/m^3$ for the receptor locations.

Receptor ID	Property Ownership	Year 2019	Year 2021	Year 2026
9	Orica Australia Pty Ltd	0	0	0
26	Forty North Pty Limited	0	0	0
37	M Stewart	0	0	0
40	JM Devenish	0	0	0
70	DJ & A Coventry	0	0	0
168	PJL Construction Complete Mine Service and Solution P/L	0	0	0

 Table 7-3: Cumulative 24-hour average PM2.5 assessment - maximum number of additional days above 24-hour average PM2.5 criterion

7.3.2 Assessment of cumulative PM₁₀ impacts

An assessment of cumulative 24-hour average PM₁₀ impacts was undertaken in accordance with the methods outlined in Section 11.2 of the *Approved Methods for the Modelling and Assessment of Air Pollutants in New South Wales* (**NSW EPA**, **2017**). The "Level 2 assessment - Contemporaneous impact and background approach" was applied to assess potential impacts.

Ambient (background) dust concentration data for January 2011 to December 2011 from the TEOM monitors (same data used for MOD9) have been applied in the Level 2 contemporaneous 24-hour average. As the existing mine was operational during this period, it would have contributed to the measured levels for dust in the area on some occasions and needs to be accounted for in the cumulative assessment. Modelling of the actual mining scenario for the Moolarben Coal Complex for the 2011 period was conducted to determine the existing contribution in the measured levels of dust. The results

² The Victorian Government's State Environment Protection Policy (Air Quality Management), **SEPP (2001)** states at Part B, 3(b) "Proponents required to include background data where no appropriate hourly background data exists must add the 70th percentile of one year's observed hourly concentrations as a constant value to the predicted maximum concentration from the model simulation. In cases where a 24-hour averaging time is used in the model, the background data must be based on 24-hour averages.

were applied in the cumulative assessment to minimise potential double counting of existing mine emissions (as they would occur in both the measured data and in the predicted levels), and thus to make a more reliable prediction of the likely cumulative total dust level.

Table 7-4 provides a summary of the findings of the contemporaneous assessment at each of the representative receptor locations. Detailed tables of the full assessment results are provided in **Appendix F**.

Receptor ID	Property Ownership	Year 2019	Year 2021	Year 2026
9	Orica Australia Pty Ltd	1	2	1
26	Forty North Pty Limited	0	1	0
37	M Stewart	1	1	0
40	JM Devenish	1	1	0
70	DJ & A Coventry	1	1	0
168	PJL Construction Complete Mine Service and Solution P/L	0	0	0

Table 7-4: NSW EPA contemporaneous assessment - maximum number of additional days above 24-hour average PM₁₀ criterion

The results in **Table 7-4** indicate that there is potential for cumulative 24-hour average PM_{10} impacts to occur at the assessed receptor locations, with the exception of Receptor 168 in Ulan Village.

Further analysis of the predicted cumulative PM_{10} impacts at Receptors 9 and 40 are presented in **Figure 7-8** to **Figure 7-10**. The figures show time series plots of the 24-hour average PM_{10} concentrations predicted to be experienced as a result of the Modification. The light blue bars represent the existing ambient background level at the monitoring location, the dark blue bars represent the potential reduction in background level due to the Modification and the orange bars represent the predicted incremental contribution due to the Modification.

Figure 7-8 to **Figure 7-10** indicate that the majority of predicted exceedances at the locations only marginally exceed the criteria and would be easily mitigated through day-to-day management of the operations.

MCO use predictive meteorological modelling software to predict daily weather events and identify adverse conditions in combination real-time dust monitoring to inform proactive and reactive dust management requirements.

To demonstrate the effectiveness of the implementation of the predictive/ reactive measures at the Moolarben Coal Complex incorporating the Modification, the dispersion modelling was re-run to consider the effects of temporarily pausing activities in the pit and overburden areas during periods of elevated dust.

Only the activities that can be controlled in the pit and overburden areas were ceased in the model, and dust from other sources such as wind erosion was still assumed for the purpose of the revised modelling.

Table 7-5 outlines the maximum number of additional days in a year predicted to exceed the 24-hour criterion with the implementation of reactive measures.

The results indicate that all of the predicted additional exceedance days due to the Modification can be prevented using the predictive/ reactive controls, which would be effective in reducing the incremental contribution of the Modification to cumulative levels.

Receptor ID	Property Ownership	Year 2019	Year 2021	Year 2026
9	Orica Australia Pty Ltd	0	0	0
26	Forty North Pty Limited	0	0	0
37	M Stewart	0	0	0
40	JM Devenish	0	0	0
70	DJ & A Coventry	0	0	0
168	PJL Construction Complete Mine Service and Solution P/L	0	0	0

 Table 7-5: NSW EPA contemporaneous assessment - maximum number of additional days above 24-hour average criterion with implementation of predictive/ reactive measures

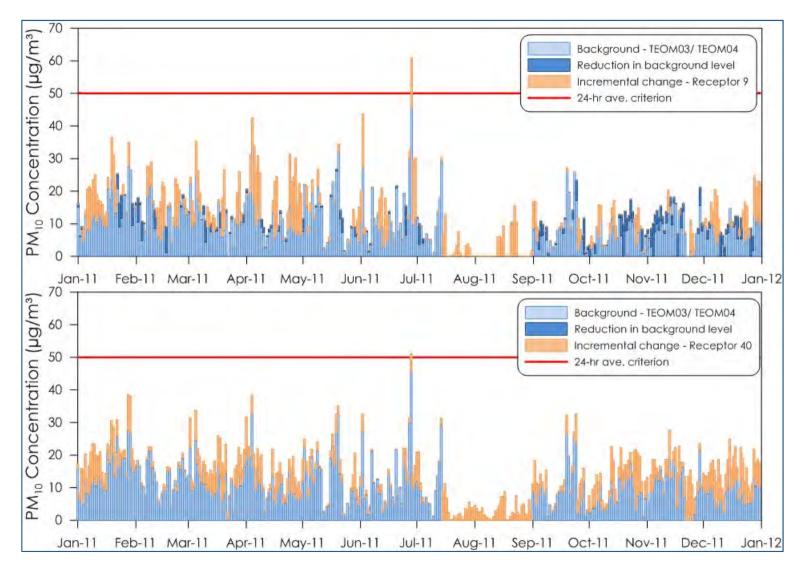


Figure 7-8: Predicted 24-hour average PM₁₀ concentrations for sensitive receptor locations 9 and 40 in Year 2019 (unmitigated)

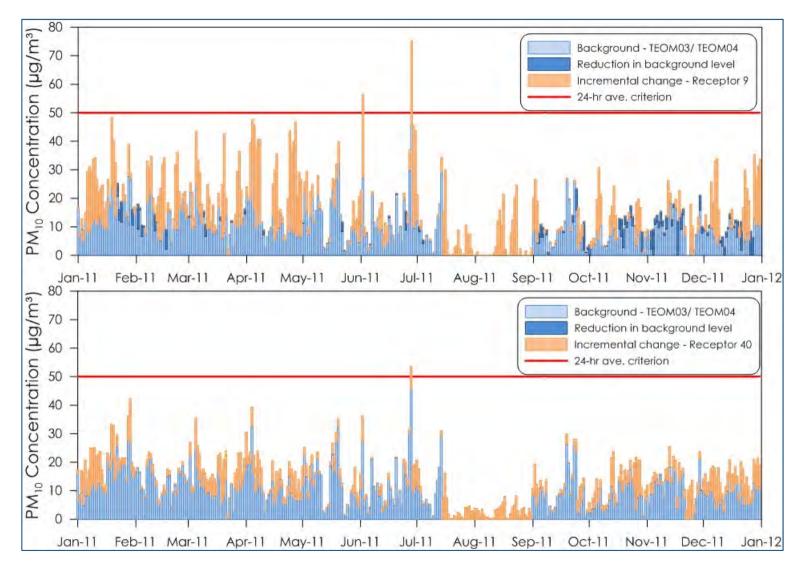


Figure 7-9: Predicted 24-hour average PM₁₀ concentrations for sensitive receptor locations 9 and 40 in Year 2021 (unmitigated)

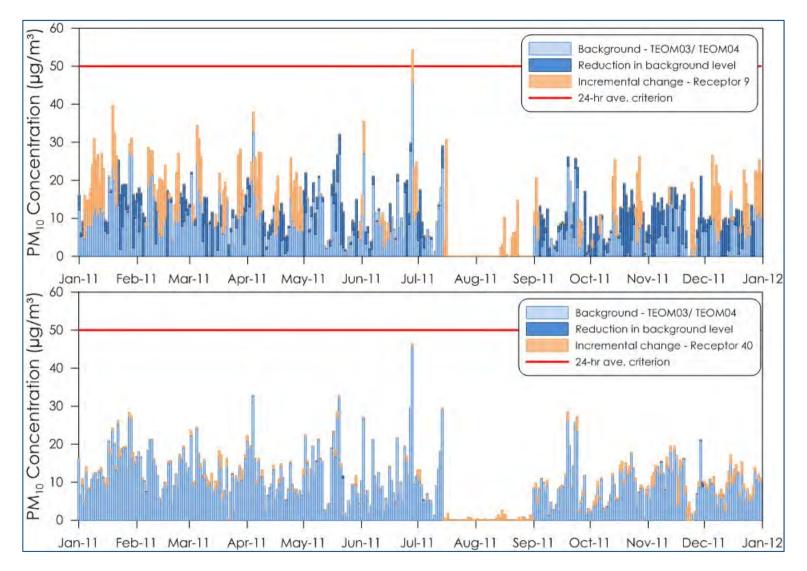


Figure 7-10: Predicted 24-hour average PM₁₀ concentrations for sensitive receptor locations 9 and 40 in Year 2026 (unmitigated)

TODOROSKI AIR SCIENCES | info@airsciences.com.au | O2 9874 2123

8 POTENTIAL COAL DUST EMISSIONS FROM TRAIN WAGONS

The Modification seeks to increase the number of trains transporting coal off-site from the Moolarben Coal Complex from an existing average of seven trains per day to eight trains and a maximum of nine trains per day to 11 trains. This activity has the potential to generate coal dust emissions from train wagons during the transportation and is assessed in this section.

8.1 Emission estimation

A study conducted by Katestone Environmental on behalf of Connell Hatch for Queensland Rail Limited (**Connell Hatch, 2008**) completed a review of a study by **Ferreira et al. (2003)** which focused on the release of coal dust from train wagons. The **Ferreira et al. (2003)** study conducted full-scale measurements of coal dust emissions from coal wagons over a 350km journey with an average train speed of between 55 and 60km/hr. The findings of this study determined that the total emission for an uncovered rail wagon was determined to be 9.6 grams (g) of TSP per km.

The Katestone Environmental study applied this emission factor with dispersion modelling and found that the resulting predicted concentration compared well with actual air quality monitoring conducted. This suggests that the findings of the **Ferreria et al. (2003)** study are realistic and therefore have been applied to estimate emissions for the Modification.

The Modification is proposing an increase in peak train movements from 9 to 11 per day. Each train would have an average capacity of approximately 10,500 tonnes of product coal and consist of approximately 91 wagons per train. This would result in an estimated emission rate of approximately 874g of TSP per km per train.

8.2 Modelling approach

The transportation model CAL3QHCR, developed by the US EPA, has been used to assess potential impacts from this source. CAL3QHCR was designed for use in dispersion modelling of road transport emissions, however given the similar linear nature of the potential train wagon emissions compared to road transport emissions it is considered to be a suitable model for this situation also.

To consider the range of varying land use between the Moolarben Coal Complex and the Port of Newcastle, and the varying orientation of the rail line relative to the prevailing winds, the dispersion model has been set up to assess theoretical sections of the rail line over a distance of 3km with two varying alignments (north/south and east/west) and two different land use categories. Dust level calculation points were applied at a spacing of 10 metres (m), perpendicular from the centre of the rail line source alignment out to a distance of 200m either side of the rail line.

8.3 Modelling predictions

Figure 8-1 presents the model predictions for each scenario. The modelling predictions indicate that at distances of 50m and beyond the rail track centreline, the maximum 24-hour average increase in TSP concentration due to the two additional peak rail movements for all scenarios would be approximately $0.7\mu g/m^3$. By assuming 40% of the TSP is comprised of PM₁₀, the predicted maximum 24-hour average PM₁₀ concentration would be approximately $0.3\mu g/m^3$.

For urban areas, the predicted maximum 24-hour average TSP level at 50m from the rail track centreline would be approximately $0.5\mu g/m^3$ with an equivalent PM₁₀ level of $0.2\mu g/m^3$.

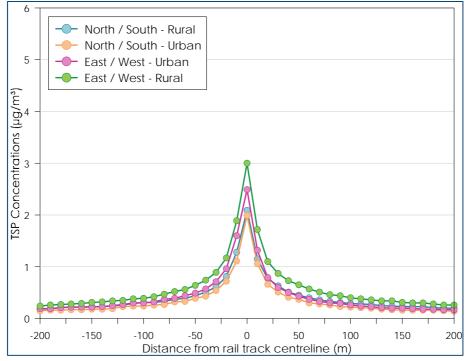


Figure 8-1: Maximum predicted 24-hour average TSP concentration based on train wagon emissions

8.4 Summary

The detailed study of dust emissions generated during rail transport of coal conducted by Katestone Environmental for Queensland Rail Limited (**Connell Hatch, 2008**) found that, based on monitoring and modelling of the emissions and impacts of coal train wagons, there appears to be a minimal risk of adverse impact on human health. The study found that concentrations of coal dust at the edge of the rail corridor are below levels known to cause adverse impacts on amenity.

A more recent review of a study conducted for the Australian Rail Track Corporation Ltd (**Ryan and Wand, 2014**) for trains travelling on the Hunter Valley network found no significant difference in the particulate matter measurements for passing freight and coal trains (loaded and unloaded).

Further analysis of the dataset, taking into account additional data suggests that a key mechanism for the increased particulate levels was due to the passing trains stirring up existing dust particles settled on the tracks and nearby ground (**Ryan & Malecki, 2015**).

This assessment is consistent with the findings of these studies in indicating that the potential for any adverse air quality impacts associated with coal dust generated during rail transport would be low and would not make any appreciable difference to air quality.

9 BLAST FUME ASSESSMENT

Air quality impacts from blast fume emissions are rare, but are possible when there are unforeseeable complications with a blast that causes high levels of NO₂ or dust emission, and when this occurs during unfavourable air dispersion conditions.

MCO employs best practice blast management measures to ensure that blasting activities are managed in a manner which would minimise the risk of impacts arising.

9.1 General outline of best practice blast management

The potential effects from blasting activities are generally managed by scheduling the blast to times when there would be a low risk of impact, for example, when winds blow away from receptors. These conditions are forecast using a predictive blast dust management system. Blast operators make the final decision to blast based on the available information, including available forecasts.

The decision of whether to initiate a blast at any given time will generally need to balance many potentially conflicting factors; for example water ingress will increase the risk of a high emissions event, thus waiting too long for ideal air dispersion conditions to occur may present an unacceptable level of risk and therefore the blast may be initiated under less than ideal weather conditions.

On the other hand, a dry blast with low scope for any degradation of the explosive over time or low potential to lead to any elevated emissions might be delayed if it appears that air dispersion conditions would soon improve significantly.

Occasionally safety concerns may also arise, and may require a blast to be detonated under less than ideal (environmental) conditions.

9.2 Management of potential air quality impacts from blasting

Air quality impacts of blast operations at the Moolarben Coal Complex will continue to be managed via the Blast Management Plan (BMP) (**Moolarben Coal Operations, 2015b**). The purpose of the BMP is to ensure that blasting operations comply with all relevant requirements particularly noise, overpressure, vibration, blast fume and dust effects.

The BMP requires a pre-blast environmental assessment to be conducted to guide operators on the suitability of various factors including the current weather conditions for blasting. The pre-blast environmental assessment takes into consideration an exclusion zone of 500m, meteorological factors such as wind speed and direction which can affect the scale of potential blast impacts at receptor locations, the design of the blast and notification to external stakeholders.

A predictive blast management system is also part of the blast management system at the Moolarben Coal Complex to aid with management of blasting operations. Such a system uses the weather conditions for each blast to predict the potential impact which may occur. The prediction is made on the basis of forecast weather data, allowing operators to schedule a blast to the time of least impact up to 48 hours in advance.

Overall, it is anticipated that with due care, potential blast impacts would be averted at the Moolarben Coal Complex. The BMP is regularly reviewed to ensure best practice blast management.

10 GREENHOUSE GAS ASSESSMENT

The Modification seeks to increase the amount of open cut ROM produced from 13Mtpa to 16Mtpa.

This increase in the annual coal extraction rate would result in an increase in the annual greenhouse gas emissions by increasing the intensity of mining activities on an annual basis, however maintaining the total resource mined is not expected to change the overall generation of greenhouse gas emissions over the life of the mine.

10.1 Greenhouse gas inventory

The National Greenhouse Accounts (NGA) Factors document published by the Commonwealth Department of the Environment and Energy (DEE) defines three scopes (Scopes 1, 2 and 3) for different emission categories based on whether the emissions generated are from "direct" or "indirect" sources.

Scope 1 emissions encompass the direct sources from a project defined as:

"... from sources within the boundary of an organisation as a result of that organisation's activities" (DEE, 2016a).

Scope 2 and 3 emissions occur due to the indirect sources from a project as:

"...emissions generated in the wider economy as a consequence of an organisation's activities (particularly from its demand for goods and services), but which are physically produced by the activities of another organisation" (DEE, 2016a).

Scope 2 emissions are associated with the generation of purchased and consumed electricity, while Scope 3 emissions involve other indirect GHG emissions.

For the purpose of this assessment, emissions generated in Scopes 1 and 2 defined above provide a suitable approximation of the total GHG emissions generated from the Modification.

Scope 3 emissions can often result in a significant component of the total emissions inventory; however, these emissions are often not directly controlled by a project. These emissions are understood to be considered in the Scope 1 emissions from other various organisations related to the project. The primary contribution of the Scope 3 emissions from the Modification occurs from the transportation of the product coal and from the end use of the product coal.

The reported Moolarben Coal Complex GHG emissions for July 2012 to June 2015 are presented in Table 10-1. The relationship between ROM production and GHG emissions generated were examined for the three years to develop scaling factors used to estimate the Scope 1 and 2 emissions generated per tonne of ROM produced for the Modification.

	2012 - 2013	2013 - 2014	2014 – 2015	Average
ROM production (tpa)	7,866,864	8,006,592	8,389,149	8,087,535
Scope 1 (t CO2-e/year)	63,160	68,712	75,748	69,207
Scope 2 (t CO2-e/year)	28,613	34,986	33,523	32,374
Total (Scope 1 + 2) (t CO ₂ -e)	91,773	103,698	109,271	-
Scaling factor – Scope 1	0.0080	0.0086	0.0090	0.0085
Scaling factor – Scope 2	0.0036	0.0044	0.0040	0.0040

10.2 Summary of greenhouse gas emissions

Table 10-2 summarises the estimated annual increase in CO_2 -e emissions due to the proposed increase in open cut ROM coal production of 3Mtpa Modification using the relationships in **Table 10-1**.

	Annual average
ROM production (tpa)	3,000,000
Scope 1 (t CO ₂ -e/year)	25,640
Scope 2 (t CO ₂ -e/year)	12,000
Total (Scope 1 + 2) (t CO ₂ -e)	37,640

Table 10-2: Summary of increased annual CO₂-e emissions for the Modification

11 SUMMARY AND CONCLUSIONS

This study has examined potential air quality and greenhouse gas impacts which may arise from the Moolarben Coal Complex incorporating the Modification for three indicative mine plan years representing year of maximum proposed rate of ROM coal production. Conservative emission estimation (e.g. using maximum mining rates) and dispersion modelling (e.g. not including the effect of rainfall) has been completed for this assessment.

This study has applied a similar methodology for assessing the potential air quality impacts associated with this Modification as has been applied for assessments of potential impacts for approved operations.

The results indicate that the Modification would be of a generally similar extent to the approved operations and that the proposed Modification would therefore not result in any significant change to what is already approved for the Moolarben Coal Complex.

No exceedance of criteria for PM2.5, PM10, TSP or dust deposition are predicted at any privately-owned receptor due to emissions from the Moolarben Coal Complex incorporating the Modification.

Short-term cumulative PM_{10} dust impacts may potentially arise at a small number of privately-owned receptor locations. However with the continued application of the predictive/ reactive dust mitigation measures by MCO, it is predicted that short-term cumulative PM_{10} dust would be adequately managed to acceptable levels.

Predicted levels for the other assessed dust metrics would be below the relevant criterion at privately-owned receptor locations. There are no likely air quality impacts associated with rail transport and blast fumes identified for the Modification.

12 REFERENCES

Bureau of Meteorology (2017)

Climate Averages Australia, Bureau of Meteorology website. Accessed June 2017. http://www.bom.gov.au/climate/averages

Connell Hatch (2008)

"Final Report, Environmental Evaluation of Fugitive Coal Dust Emissions from Coal Trains Goonyella, Blackwater and Moura Coal Rail Systems Queensland Rail Limited", March 2008.

DEE (2016a)

"National Greenhouse Accounts Factors Australian National Greenhouse Accounts", Department of the Environment and Energy [DEE], August 2016.

DEE (2016b)

"Quarterly Update of Australia's National Greenhouse Gas Inventory: June 2016", Department of the Environment and Energy, December 2016.

DEE (2017)

"State and Territory Greenhouse Gas Inventories 2015", Department of the Environment and Energy, May 2017.

Ferreira A. D., Viegas D. X. and Sousa A. C. M (2003)

"Full-scale measurements for evaluation of coal dust release from train wagons with two different shelter covers." Journal of Wind Engineering and Industrial Aerodynamics, 91, 1271-1283.

Katestone Environmental Pty Ltd (2010)

"NSW Coal Mining Benchmarking Study: International Best Practice Measures to Prevent and/or Minimise Emissions of Particulate Matter from Coal Mining", Katestone Environmental Pty Ltd prepared for DECCW, 2010.

Moolarben Coal Operations (2015a)

"Annual Environmental Management Report 2013-2014", prepared by Moolarben Coal Operations Pty Ltd, March 2015.

Moolarben Coal Operations (2015b)

"Blast Management Plan", prepared by Moolarben Coal Operations Pty Ltd, June 2015.

Moolarben Coal Operations (2015c)

"Air Quality Management Plan", prepared by Moolarben Coal Operations Pty Ltd, August 2015.

National Pollutant Inventory (2012)

"Emission Estimation Technique Manual for Mining Version 3.1", National Pollutant Inventory, January 2012.

New South Wales Government (2014)

"Voluntary Land Acquisition and Mitigation Policy for State Significant Mining, Petroleum and Extractive Industry Developments". NSW Government, 15 December 2014.

NSW EPA (2017)

"Approved Methods for the Modelling and Assessment of Air Pollutants in New South Wales", January 2017.

PAEHolmes (2009)

"Air Quality Impact Assessment Ulan Coal – Continued Operations", prepared for Umwelt (Australia) Pty Limited on behalf of Ulan Coal Mines Limited by PAEHolmes, September 2009.

Ryan L. and Malecki A. (2015)

"Additional analysis of ARTC Data on Particulate Emissions in the Rail Corridor", NSW Environment Protection Authority. Prepared by accessUTS Pty Ltd, August 2015.

Ryan L. and Wand M. (2014)

"Re-analysis of ARTC Data on Particulate Emissions from Coal Trains", NSW Environment Protection Authority. Prepared by accessUTS Pty Ltd, February 2014.

SEPP (2001)

"Victorian Government Gazette - State Environmental Protection Policy (Air Quality Management)", No. S 240, Government of Victoria, Melbourne.

Todoroski Air Sciences (2013)

"Moolarben Coal Project Stage 1 Optimisation Modification Air Quality and Greenhouse Gas Assessment", prepared for EMGA Mitchell McLennan by Todoroski Air Sciences, May 2013.

Todoroski Air Sciences (2014)

"Air Quality Assessment Moolarben Coal Project OC4 South-West Modification", prepared by Todoroski Air Sciences, November 2014.

Todoroski Air Sciences (2015a)

"Air Quality Assessment Moolarben Coal Complex UG1 Optimisation Modification", prepared by Todoroski Air Sciences, May 2015.

Todoroski Air Sciences (2015b)

"Air Quality and Greenhouse Gas Assessment Wilpinjong Extension Project", prepared for Wilpinjong Coal Pty Ltd by Todoroski Air Sciences, November 2015.

United States Environmental Protection Authority (1985 and updates)

"Compilation of Air Pollutant Emission Factors", AP-42, Fourth Edition United States Environmental Protection Agency, Office of Air and Radiation Office of Air Quality Planning and Standards, Research Triangle Park, North Carolina 27711.

Appendix A

Sensitive Receptor Locations

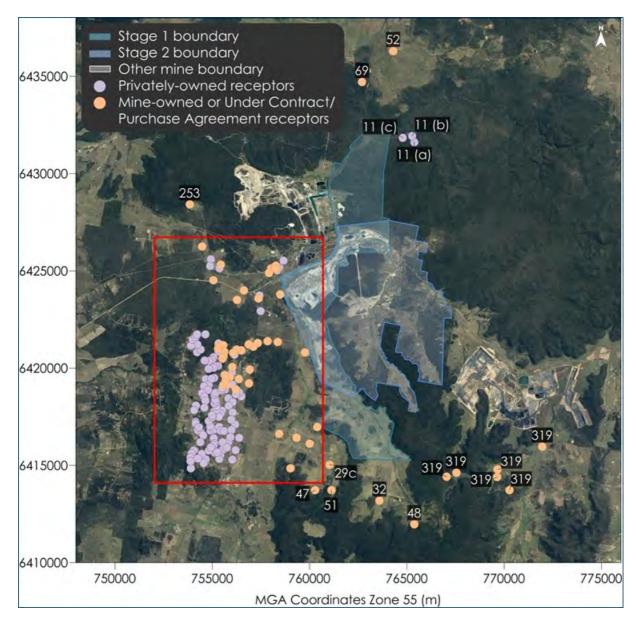


Figure A-1: Location of sensitive receptors assessed in this study

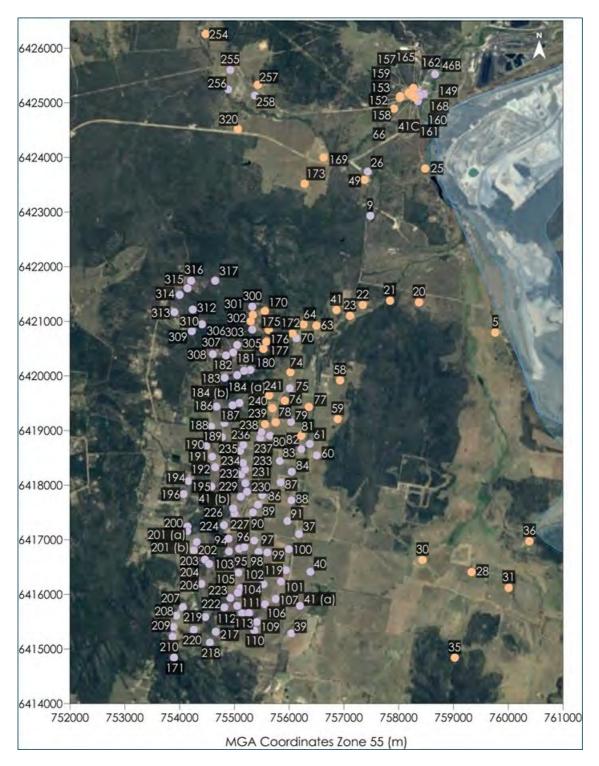


Figure A-2: Location of sensitive receptors assessed in this study - Insert

	Table	A-1: List of pr	ivately-owned s	ensitive rece	ptors assessed in thi	s study	
ID	Туре	Easting	Northing	ID	Туре	Easting	Northing
9	Commercial	757478	6422930	195	Private	754583	6417973
26	Commercial	757430	6423741	196	Private	754072	6417840
37	Private	756179	6417107	200	Private	754141	6417241
39	Private	756038	6415288	202	Private	754258	6416804
40	Private	756389	6416414	203	Private	754462	6416639
60	Private	756500	6418546	204	Private	754537	6416557
61	Private	756375	6418755	206	Private	754394	6416192
66	Commercial	758310	6425130	207	Private	754057	6415768
70	Private	756132	6420692	208	Private	753938	6415612
75	Private	756012	6419777	209	Private	753883	6415407
79	Private	756034	6419159	210	Private	753873	6415226
80	Private	755649	6418908	217	Private	754659	6415319
82	Private	756223	6418659	218	Private	754550	6415117
83	Private	755832	6418444	210	Private	754468	6415587
84	Private	756047	6418248	210	Private	754258	6415351
86	Private	755506	6417818	220	Private	754813	6415761
87				222			
	Private	755841	6418051 6417724		Private	754921	6415935
88 80	Private	756043	6417724	224	Private	754895	6417021
89	Private	755431	6417645	226	Private	754812	6417270
90	Private	755337	6417501	227	Private	755000	6417482
91	Private	755969	6417348	229	Private	755115	6417791
94	Private	754900	6416785	230	Private	755229	6417879
95	Private	755085	6416834	231	Private	755200	6418034
96	Private	755183	6416867	232	Private	755121	6418197
97	Private	755364	6416985	233	Private	755196	6418290
98	Private	755440	6416783	234	Private	755157	6418405
99	Private	755603	6416770	235	Private	755107	6418631
100	Private	755992	6416832	236	Private	755165	6418738
101	Private	755850	6416237	237	Private	755468	6418862
102	Private	755530	6416189	238	Private	755497	6418969
103	Private	755072	6416399	255	Private	754922	6425602
104	Private	755112	6416116	256	Private	754887	6425251
105	Private	755061	6416033	258	Private	755375	6425132
106	Private	755558	6415823	300	Private	755327	6421268
107	Private	755752	6415919	303	Private	755327	6420850
109	Private	755410	6415494	305	Private	755052	6420566
110	Private	755361	6415339	306	Private	754978	6420431
111	Private	755052	6415789	307	Private	754843	6420373
112	Private	755138	6415655	308	Private	754605	6420402
113	Private	755269	6415661	309	Private	754219	6420817
119	Private	755937	6416447	310	Private	754407	6420948
149	Commercial	758457	6425165	312	Private	754239	6421215
160	School	758350	6425029	313	Private	753906	6421166
162	Commercial	758342	6425199	314	Private	753997	6421486
168	Church	758386	6425136	315	Private	754141	6421605
171	Private	753898	6414840	316	Private	754210	6421744
180	Private	755292	6420111	317	Private	754646	6421744
181	Private	755178	6420092	11 (a)	Commercial	765376	6431622
182	Private	755049	6420016	11 (b)	Private	765265	6431931
182	Private	754822	6419969	11 (c)	Commercial	764784	6431839
185	Private	754674	6419437	184 (a)	Private	755093	6419504
180	Private	754816	6419137	184 (b)	Private	754967	6419464
187	Private	754577	6419073	201 (a)	Private	754138	6417158
189	Private	754772	6419073	201 (a) 201 (b)	Private	754311	6416962
189	Private	754488	6418881	41 (a)	Private	756194	6415791
191 192	Private	754592	6418520	41 (b)	Private	754978	6417572
	Private	754649	6418328	46B	Commercial	758663	6425526
194	Private	754160	6418080				

Table A-1: List of privately-owned sensitive receptors assessed in this study

10					rs assessed in this		
ID	Туре	Easting	Northing	ID	Туре	Easting	Northing
5	Mine	759764	6420796	158	Mine	757911	6424895
20	Mine	758370	6421350	159	Mine	758237	6425137
21	Mine	757840	6421380	161	Mine	758298	6425100
22	Mine	757342	6421298	165	Mine	758268	6425275
23	Mine	757110	6421102	169	Mine	756630	6424000
25	Mine	758484	6423794	170	Mine	755557	6421185
28	Mine	759330	6416410	172	Mine	756058	6420779
30	Mine	758435	6416631	173	Mine	756280	6423520
31	Mine	760008	6416123	175	Mine	755624	6420844
32	Mine	763590	6413194	176	Mine	755585	6420625
35	Mine	759021	6414840	177	Mine	755530	6420496
36	Mine	760388	6416975	239	Mine	755558	6419118
41	Mine	756863	6421212	240	Mine	755694	6419408
47	Mine	760293	6413734	241	Mine	755631	6419645
48	Mine	765380	6411970	253	Mine	753840	6428415
49	Mine	757370	6423590	254	Mine	754474	6426260
51	Mine	761130	6413720	257	Mine	755429	6425331
52	Mine	764290	6436310	301	Mine	755336	6421121
58	Mine	756926	6419919	302	Mine	755299	6420997
59	Mine	756886	6419210	319	Mine	767049	6414413
	MCO Pty Ltd -						
63	Under Contract/	756497	6420923	319	Mine	767545	6414629
	Purchase Agreement						
64	Mine	756262	6420946	319	Mine	769659	6414795
69	Mine	762690	6434710	319	Mine	769645	6414405
74	Mine	756021	6420067	319	Mine	770276	6413737
76	Mine	755920	6419546	319	Mine	771960	6415964
77	Mine	756357	6419434	320	Mine	755059	6424522
78	Mine	755750	6419149	41C	Mine	758241	6425152
81	Mine	756220	6418906	29c	Mine	761033.5	6415038
152	Mine	758019	6425090				
153	Mine	758029	6425124				
157	Mine	758183	6425184				

Table A-2: List of mine-owned sensitive receptors assessed in this study

Appendix B

Windrose Plots

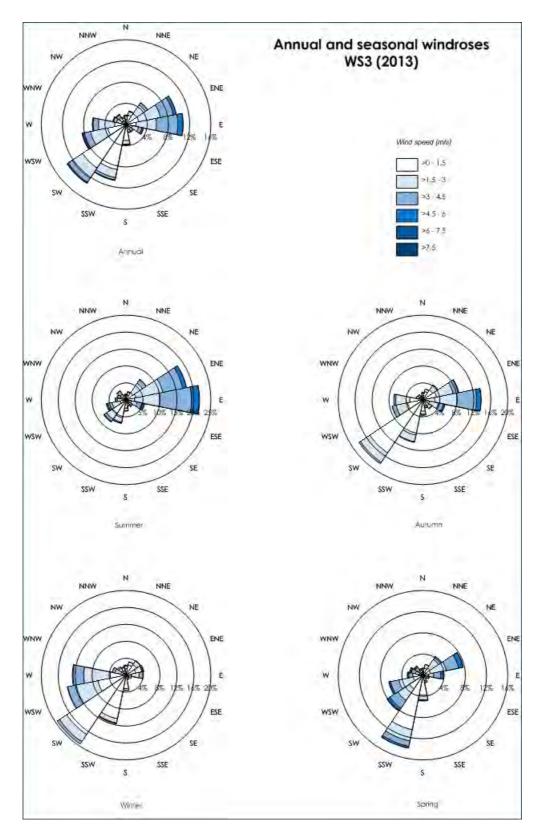


Figure B-1: Annual and seasonal windroses for WS3 (2013)

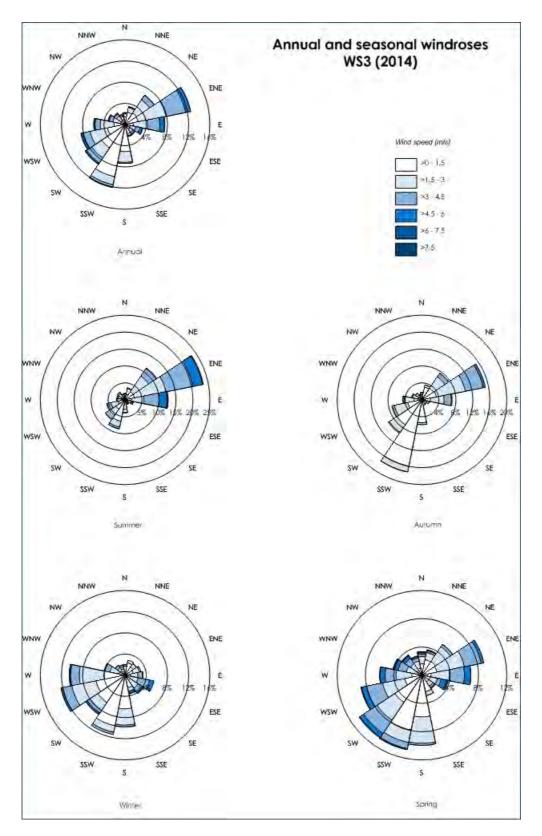


Figure B-2: Annual and seasonal windroses for WS3 (2014)

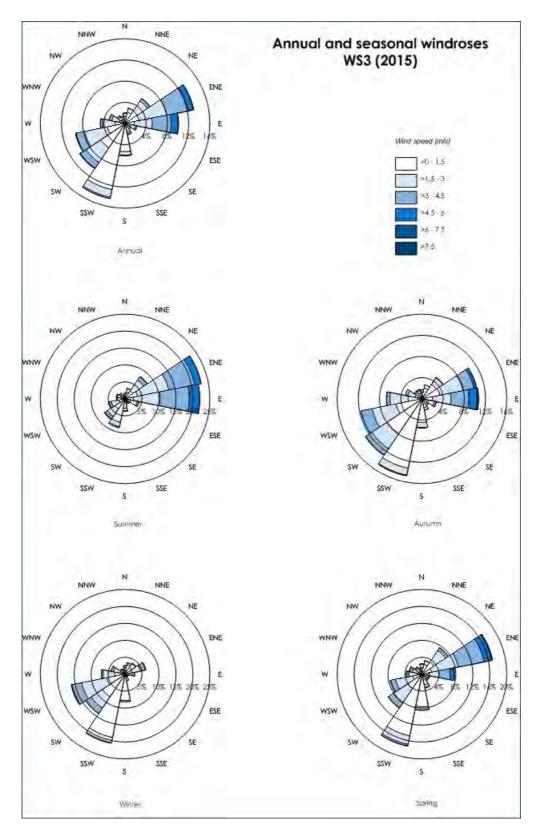


Figure B-3: Annual and seasonal windroses for WS3 (2015)

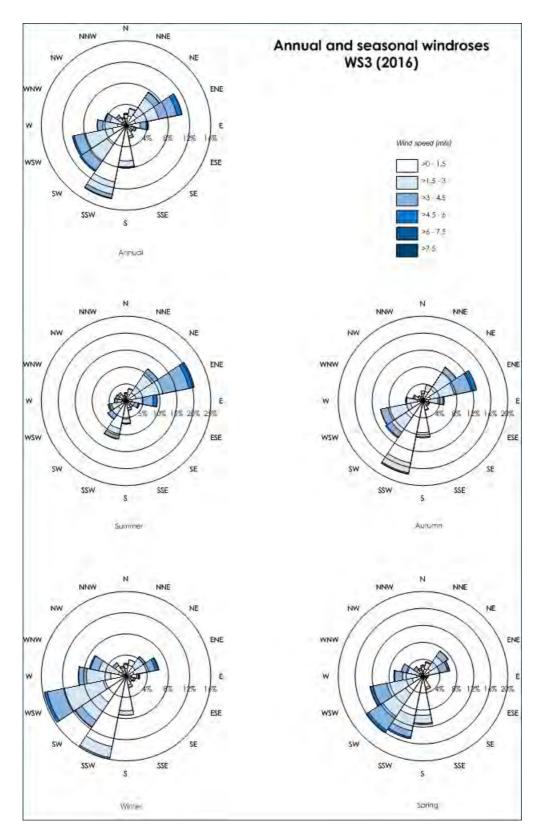


Figure B-4: Annual and seasonal windroses for WS3 (2016)

Appendix C

Emissions Calculation

Emission Calculation

The mining schedule and mine plan designs provided by MCO have been combined with emissions factor equations that relate to the quantity of dust emitted from particular activities based on intensity, the prevailing meteorological conditions, and composition of the material being handled.

Emission factors and associated controls have been sourced from the US EPA AP42 Emission Factors (**US EPA, 1985 and Updates**), the National Pollutant Inventory document *Emission Estimation Technique Manual for Mining, Version 3.1* (**NPI, 2012**) and the NSW EPA document, *NSW Coal Mining Benchmarking Study: International Best Practice Measures to Prevent and/or Minimise Emissions of Particulate Matter from Coal Mining*, prepared by Katestone Environmental (**Katestone Environmental**, **2010**).

The emission factor equations used for each dust generating activity are outlined in **Table C-1** below. Detailed emission inventories for each scenario are presented in **Table C-2** to **Table C-4**.

Control factors include the following:

- Hauling on unpaved surfaces 90% control for watering of trafficked areas. Note the control factor is only applied to the mechanically generated emissions and not the contributions from the diesel exhaust emissions.
- Drilling 70% control for use of dust suppression.
- Unloading ROM to hopper at CHPP 50% control for fogging sprays.
- Conveyor 70% control for enclosed conveyors.
- Dozer on coal 50% for keeping travel routes moist.
- Inactive areas 50% for watering of exposed surface and surface crusting.
- Partial rehabilitation 70% for vegetative ground cover.
- + Coal stockpiles 50% for watering stockpile surface.

	Table C-1: E	mission factor equations	
Activity		Emission factor equation	
Activity	TSP	PM ₁₀	PM _{2.5}
Drilling (overburden)	$EF = 0.59 \ kg/hole$	$0.52 \times TSP$	$0.03 \times TSP$
Drilling (coal)	$EF = 0.1 \ kg/hole$	$0.52 \times TSP$	$0.03 \times TSP$
Blasting (overburden/ coal)	$EF = 0.00022 \times A^{1.5} kg/blast$	$0.52 \times TSP$	$0.03 \times TSP$
Loading / emplacing overburden & loading product coal to stockpile	$EF = 0.74 \times 0.0016$ $\times \left(\frac{U^{1.3}}{2.2} / \frac{M^{1.4}}{2}\right) kg$	$EF = 0.35 \times 0.0016 \times \left(\frac{U}{2.2}^{1.3} / \frac{M^{1.4}}{2}\right) kg/tonne$	$EF = 0.053 \times 0.0016$ $\times \left(\frac{U^{1.3}}{2.2} / \frac{M^{1.4}}{2}\right) kg/tonne$
& conveyor transfer	/tonne		
Hauling on unsealed surfaces	$EF = \left(\frac{0.4536}{1.6093}\right) \times 4.9 \times (s/12)^{0.7}$	$EF = \left(\frac{0.4536}{1.6093}\right) \times 1.5 \times (s/12)^{0.9}$	$EF = \left(\frac{0.4536}{1.6093}\right) \times 0.15 \times (s/12)^{0.9}$
	× $(1.1023 \times M/3)^{0.45} kg$ /VKT	× $(1.1023 \times M/3)^{0.45} kg/VKT$	× $(1.1023 \times M/3)^{0.45} kg$ /VKT
Dozers on overburden	$EF = 2.6 \times \frac{s^{1.2}}{M^{1.3}} kg/hour$	$EF = 0.45 \times \frac{s^{1.5}}{M^{1.4}} \times 0.75 kg/hour$	$\frac{/VKT}{EF = 2.6 \times \frac{s^{1.2}}{M^{1.3}} \times 0.105 kg/hour}$
Dozers on coal	$EF = 35.6 \times \frac{s^{1.2}}{M^{1.4}} \ kg/hour$	$EF = 8.44 \times \frac{s^{1.5}}{M^{1.4}} \times 0.75 kg/hour$	$EF = 35.6 \times \frac{s^{1.2}}{M^{1.4}} \times 0.022 kg/hour$
Loading / emplacing coal	$EF = \frac{0.58}{M^{1.2}} kg/tonne$	$EF = \frac{0.0596}{M^{0.9}} \times 0.75 \ kg/tonne$	$EF = \frac{0.58}{M^{1.2}} \times 0.019 kg/tonne$
Sizing coal	EF = 0.0027 kg/tonne	$EF = 0.0012 \ kg/t$ onne	$0.047 \times TSP$
Wind erosion on exposed areas,			
stockpiles	EF = 850 kg/ha / year	$0.5 \times TSP$	$0.075 \times TSP$
& conveyors			
Grading roads	$EF = 0.0034 \times sp^{2.5} kg/VKT$	$EF = 0.0056 \times sp^{2.0} \times 0.6 kg/VKT$	$EF = 0.0034 \times sp^{2.0} \times 0.031 kg/VKT$

EF = emission factor, A = area of blast (m²), U = wind speed (m/s), M = moisture content (%), s = silt content (%), VKT = vehicle kilometres travelled (km), p = number of days per year when rainfall is greater than 0.25mm (days), f = percentage of time that wind speed is greater than 5.4m/s (%), sp = speed of grader (km/h).

									,	Tearz												
ACTIVITY	TSP emission	PM10 emission	PM25 emission	Intensity	Units	Emission Factor - TSP	Emission Factor - PM10	Emission Factor - PM25	Units	Variable 1	Units	Variable 2	Units	Varia ble 3 - TSP		- Units	Varial le 4	0 Units	Varia ble 5	Units	Varia ble 6	Units
Overbuden																						
OB - Stripping Topsoil - OC1	1,356	530	64	97	hours/year	14.0	5.5	0.7	kg/h	450	total hours/year	-										
OB - Stripping Topsoil - OC2	1,472	576	69	105	hours/year	14.0	5.5	0.7	kg/h	450	total hours/year	-										
OB - Stripping Topsoil - OC3	1,419	555	67	101	hours/year	14.0	5.5	0.7	kg/h	450	total hours/year	-										
OB - Stripping Topsoil - OC4	2,053	803	96		hours/year	14.0			kg/h		total hours/year											
OB - Drilling - OC1	1,304	678	39	7,368	holes/year	0.59	0.31		kg/hole	0.00074	holes/bcm										70	% Contro
OB - Drilling - OC2	1,415	736	42	7,997	holes/year	0.59	0.31		kg/hole	0.00074	holes/bcm										70	% Contro
OB - Drilling - OC3	1,364	709	41	7,707	holes/year	0.59	0.31	0.02	kg/hole	0.00074	holes/bcm										70	% Contro
OB - Drilling - OC4	3,291	1,711	99	18,590	holes/year	0.59	0.31	0.02	kg/hole	0.00074	holes/bcm										70	% Contro
OB - Blasting - OC1	11,953	6,216	359	21	blasts/year	572	297.2	17.1	kg/blast	18,900	Area of blast in i	n 0.0000021	blasts/bcm									
OB - Blasting - OC2	12,972	6,745	389	23	blasts/year	572	297.2	17.1	kg/blast	18,900	Area of blast in i	n 0.0000021	blasts/bcm									
OB - Blasting - OC3	12,502	6,501	375	22	blasts/year	572	297.2	17.1	kg/blast	18,900	Area of blast in i	n 0.0000021	blasts/bcm									
OB - Blasting - OC4	30,157	15,682	905	53	blasts/year	572	297.2	17.1	kg/blast	18,900	Area of blast in i	n 0.0000021	blasts/bcm									
OB - Excavator loading OB to haul truck - OC1	23,153	10,951	1,658	21,906,259	tonnes/year	0.001	0.00050			0.893	(WS/2.2) ^{1.3} in m	/ 2	MC in %	2.2		tonnes/BC	M					
OB - Excavator loading OB to haul truck - OC2	25,126	11,884	1,800	23,773,456	tonnes/year	0.001	0.00050	0.00008	kg/t	0.893	(WS/2.2) ^{1.3} in m	/ 2	MC in %	2.2		tonnes/BC	M					
OB - Excavator loading OB to haul truck - OC3	24,215	11,453	1,734	22,911,843	tonnes/year	0.001	0.00050	0.00008			(WS/2.2) ^{1.3} in m		MC in %	2.2		tonnes/BC	M					
OB - Excavator loading OB to haul truck - OC4	35,048	16,577	2,510	33,161,330	tonnes/year	0.001	0.00050	0.00008	kg/t		(WS/2.2) ^{1.3} in m		MC in %	2.2		tonnes/BC	M 60	0 % OB excava	ator onl	y		
OB - Excavator rehandle - OC4	1,168	553	84	1,105,378	tonnes/year	0.001	0.00050	0.00008		0.893	(WS/2.2) ^{1.3} in m	/ 2	MC in %	2.2		tonnes/BC	M :	2 % OB rehand	dle			
OB - Hauling to dump - OC1 (OC1 void)	169,248	43,005	5,466	10.953.130	tonnes/year	0.153	0.038	0.004	ka/t	215	tonnes/load	6.2	km/return tr	5.3	1.3 (0.1 kg/VKT	4.3	2 % silt conter	279	Ave GMV	90	% Contro
OB - Hauling to dump - OC1 (OC1 dump)	82,586	21,500	3,315	10,953,130	tonnes/year	0.074	0.018	0.002			tonnes/load		km/return tr	5.3		0.1 kg/VKT		2 % silt conter				% Contro
OB - Hauling to dump - OC2	179,250	46,666	7,196	23,773,456	tonnes/year	0.074	0.018	0.002	kq/t	215	tonnes/load	3.0	km/return tr	5.3	1.3 (0.1 kg/VKT	4.3	2 % silt conter	279	Ave GMV	90	% Contro
OB - Hauling to dump - OC3	104,773	28,106	5,248	22,911,843	tonnes/year	0.045	0.011	0.001	kg/t	215	tonnes/load	1.8	km/return tr	5.3	1.3 (0.1 kg/VKT	4.3	2 % silt conter	279	Ave GMV	90	% Contro
OB - Hauling to dump - OC4 (930 E)	64,424	18,474	4,726	16.580.665	tonnes/year	0.037	0.009			317	tonnes/load		km/return tr	5.8	1.4 (0.1 kg/VKT	4.3	2 % silt conter	344	Ave GMV	90	% Contro
OB - Hauling to dump - OC4 (830 E)	149.614	38,651	5,629	16,580,665	tonnes/year	0.089	0.022	0.002			tonnes/load		km/return tr	5.3		0.1 kg/VKT	4.3	2 % silt conter	279	Ave GMV	90	% Contro
OB - Emplacing at dump - OC1 (OC1 void)	11,576	5,475	829	10,953,130	tonnes/year	0.001					(WS/2.2) ^{1.3} in m		MC in %									
OB - Emplacing at dump - OC1 (OC1 dump)	11,576	5,475	829	10,953,130	tonnes/year	0.001	0.00050	0.00008			(WS/2.2) ^{1.3} in m		MC in %									
OB - Emplacing at dump - OC2	25,126	11.884	1.800	23,773,456	tonnes/year	0.001	0.00050	0.00008		0.893	(WS/2.2) ^{1.3} in m		MC in %									
OB - Emplacing at dump - OC3	24,215	11,453	1,734	22.911.843	tonnes/year	0.001	0.00050	0.00008			(WS/2.2) ^{1.3} in m		MC in %									
OB - Emplacing at dump - OC4	35,048	16,577	2,510	33,161,330	tonnes/year	0.001	0.00050	0.00008	kg/t		(WS/2.2) ^{1.3} in m		MC in %									
OB - Dozers on OB (dump and pit) - OC1	-	-	-	-	hours/year	16.7					SC in %		MC in %									
OB - Dozers on OB (dump and pit) - OC2	309,620	74,822	32,510	18.501	hours/year	16.7					SC in %	1	MC in %									
OB - Dozers on OB (dump and pit) - OC3	155.689	37,623	16.347	9,303	hours/year	16.7				10	SC in %	1	MC in %									
OB - Dozers on OB (dump and pit) - OC4	681,262	164,631	71,533	40,708		16.7	4.0			10	SC in %	2	MC in %									
Coal																						
CL - Drilling - OC1	39	20	1	1.298	holes/year	0.10	0.05	0.00	kg/hole	0.001	Holes/tonne RO	м									70	% Contro
CL - Drilling - OC2	106	55	3	3.548	holes/year	0.10	0.05		ka/hole		Holes/tonne RO										70	% Contro
CL - Drilling - OC3	92	48	3			0.10			kg/hole		Holes/tonne RO											% Contro
CL - Drilling - OC4	243	126	7		holes/year	0.10			kg/hole		Holes/tonne RO											% Contro
CL - Blasting - OC1	3,234	1,681	97		blasts / year	859			kg/blast		Area of blast in i		blasts/tonn	e ROM								
CL - Blasting - OC2	8,841	4,597	265		blasts / year	859			kg/blast		Area of blast in i											
CL - Blasting - OC3	7,625	3,965	229		blasts / year	859			kg/blast		Area of blast in i											
CL - Blasting - OC4	20,168	10,487	605		blasts / year	859			kg/blast	24,800	Area of blast in	n 0.0000029	blasts/tonne	e ROM								
CL - Dozers ripping/pushing/clean-up - OC1	7,756	1.830	171	852		18.2				5	SC in %	7.4	MC in %								50	% Contro
CL - Dozers ripping/pushing/clean-up - OC2	20,573	4.853	453	2,260		18.2					SC in %		MC in %									% Contro
CL - Dozers ripping/pushing/clean-up - OC3	17.742	4,185	390	1,949	hours/year	18.2					SC in %		MC in %									% Contro
CL - Dozers ripping/pushing/clean-up - OC4	48,400	11,417	1.065		hours/year	18.2	4.3				SC in %		MC in %									% Contro
CL - Loading ROM coal to haul truck - OC1	68,160	9,576	1,295	1,297,709	tonnes/year	0.053	0.007				MC in %											
CL - Loading ROM coal to haul truck - OC2	186,352	26,181	3.541	3.548.002	tonnes/year	0.053	0.007				MC in %			1		1		1				
CL - Loading ROM coal to haul truck - OC3	160,734	22,582	3.054		tonnes/year	0.053					MC in %					1		1				
CL - Loading ROM coal to haul truck - OC4	425,123	59,726	8,077	8.094.029	tonnes/year	0.053	0.007	0.001			MC in %		1	1		1		1		1		
CL - Hauling ROM to hopper - OC1	28,508	7,331	1,030	1,297,709	tonnes/year	0.217					tonnes/load	8.0	km/return tr	4.9	1.2 (0.1 kg/VKT	4	2 % silt conter	234	Ave GMV	90	% Contro
CL - Hauling ROM to hopper - OC2	154,950	39,153	4,728	3,548,002	tonnes/year	0.434					tonnes/load		km/return tr	4.9		0.1 kg/VKT		2 % silt conter		Ave GMV		% Contro
CL - Hauling ROM to hopper - OC3	198,410	49,841	5,685	3,060,260	tonnes/year	0.646					tonnes/load		km/return tr	4.9		0.1 kg/VKT		2 % silt conter		Ave GMV		% Contro
CL - Hauling ROM to hopper - OC4	100,949	26.652	4,519	8,094,029	tonnes/year	0.122	0.030	0.003			tonnes/load		km/return tr	4.9		0.1 kg/VKT		2 % silt conter				% Contro
CL - Unload to hooper or stockpile (OC1, OC2, OC3)	207,623	29,169	3,945	7,905,971	tonnes/year	0.053	0.007				MC in %	4.5		7		Ng/ • N1			204			% Contro
CL - Unload to hopper or stockpile (OC4)	212,562	29,863	4,039	8.094.029	tonnes/year	0.053	0.007	0.001			MC in %			-			+		1	1		% Contro
CL - Rehandling - (OC1 + OC2 + OC3) - at hopper	110,621	15.541	2,102	2,106,151	tonnes/year	0.053	0.007				MC in %	-				1	-		1		50	75 001110
CL - Rehandling - OC4 - at hopper	113,253	15,911	2,102	2,156,249		0.053	0.007				MC in %			1			1		1			
oc - Kenanaling - 004 - at hopper	113,253	15,711	2,152	2,100,249	connes/year	0.053	0.007	0.001	Ng/ L	1.4	WIG III 70	1	-	I				-		L	L	

Table C-2: Emission inventory – Year 2019

Open Cut	0 6 0 19,2 9 19,2 88 1,5 9 1,5 0 1 16 1 14 4 44 4	15 2 	16,000,000 0.04 16,000,000 0.2 12,543,993 12,543,993 0.3	tonnes/year tonnes/year ha tonnes/year	0.40 0.000 0.0027 0.40 0.40		0.0	kg/ha/hour kg/t kg/t kg/ha/hour	8,760 0.893	hours (WS/2.2) ^{1.3} in m/											
CHPP - Irransfer to Sizing Station (Oc4) 1,37 CHPP - Sizing Station (Oc1 + OC2+OC3+OC4) 43,20 CHPP - Sconveying to CHPP (OC) 320 CHPP - Vashing (OC) - CHPP - Vashing (OC) - CHPP - Norweying to CHPP Product Stockpile (OC) 1,39 CHPP - Norweying to CHPP Product Stockpile (OC) 1,39 CHPP - Rodiam and Conveying to TLO (3 transfer point 4,117 Underground CHPP - Conveyor transfer point at UG portal entrance 31 CHPP - Norweyor to TLO (3 transfer point 4,117 1,02 CHPP - Conveyor transfer point at UG portal entrance 1,02 CHPP - Transfer to sizing station (al product coal stool 1,02 CHPP - Norweying to Conveyor to TLO (3 transfer point 3,07 Dozer - 3,07 CHPP - Loading rejects from CHPP to loadout 14 CHPP - Loading rejects 14 CHPP - Loading rejects 126,67 CHPP - Unloading rejects 14 CHPP - Loading rejects 14 CHPP - Loading rejects 14 CHPP - Loading rejects 14 CHPP - Unloading rejects	0 6 0 19,2 9 9 18 13 6 9 1,5 9 1,5 0 1 6 1 4 4 4 4 4 4 4 4	48 98 00 2,030 15 2 - - 81 10 59 100 76 299 21 15 51 18 84 73	8,094,029 16,000,000 0.04 16,000,000 0.2 12,543,993 12,543,993 0.3	tonnes/year tonnes/year ha tonnes/year ha tonnes/year	0.000 0.0027 0.40 0.40 0.40	0.00008 0.00120 0.2	0.00001 0.0 0.0	kg/t kg/t													
CHPP - Sizing Station (QC1-0C2+0C3+0C4) 43.20 CHPP - Conveying to CHPP (QC) 3 CHPP - Conveying to CHPP Product Stockpile (QC) 20 CHPP - Conveying to CHPP Product Stockpile (QC) 20 CHPP - Neclaim and Conveying to TLO (3 transfer point 4.17 20 CHPP - Neclaim and Conveying to TLO (3 transfer point 4.17 4.17 Underground 10 20 CHPP - Noveyor to UG1 pit top 38 CHPP - Indoad to ROM stockpile 1.02 CHPP - Indoad to ROM stockpile 1.02 CHPP - Reclaim and conveyor to TLO (3 transfer point 3.07 3.07 CHPP - Neclaim and conveyor to TLO (3 transfer point 3.07 3.07 CHPP - Nover pushing ROM coal at UG1 pit top 27,74 CHPP - Conveying rejects from CHPP to loadout 18 CHPP - Conveying rejects from CHPP to loadout 18 CHPP - Landing rejects 14 CHPP - Landing rejects 14 CHPP - Landing rejects 14 CHPP - Loarer pushing ROM coal title top 2,51 CHP - Loarer pushing ROM coal (40 pags) at product sol 14 CHPP - Loarer pushing ROM coal at UG1 pit top <	0 19,2 9 19,2 8 8 9 1,5 0 1 6 1 4 4 4 4 4 4	2,030 2,030 15 2 - - 81 10 59 100 76 299 - - 21 15 51 18 84 73	16,000,000 0.04 16,000,000 0.2 12,543,993 12,543,993 0.3	tonnes/year ha tonnes/year ha tonnes/year	0.0027 0.40 0.40 0.000	0.00120	0.0	kg/t	0.893	(WS/2.2) ^{1.3} in m/							1				70 % Contro
CHPP - Conveying to CHPP (OC) 3 CHPP - Vashing (OC) - CHPP - Vashing to CHPP Product Stockpile (OC) 1,39 CHPP - Reclaim and Conveying to TLO (3 transfer point 4,17 Underground - CHPP - Conveyor transfer point at UG portal entrance 31 CHPP - Conveyor transfer point at UG portal entrance 1,02 CHPP - Conveyor to UG1 pit top 38 CHPP - Neckaim and conveyor to TLO (3 transfer point 3,00 1,02 CHPP - Notoct box point stockpile 1,02 CHPP - Notoct pushing ROM coal at UG1 pit top 27,74 CHPP - Conveying rejects from CHPP to loadout 59,52 Rejects 14 CHPP - Conveying rejects 146,67 CHPP - Loading rejects 14 ChPP - Unloading rejects 14 Col - Active mining area (pit, a	9 13 6 9 1,5 0 1 6 1 6 1 4 4 4 4 4 4	15 2 	0.04 16,000,000 0.2 12,543,993 12,543,993 0.3	ha tonnes/year ha tonnes/year	0.40	0.2	0.0				1.4	MC in %									
CHPP - Washing (OC) - CHPP - Washing to CHPP Product Stockpile (OC) 20 CHPP - Inhoading to CHPP Product Stockpile (OC) 1,39 CHPP - Neclaim and Conveying to TLO (3 transfer point 4,17 1 Underground - - CHPP - Longating to CHPP product Stockpile (OC) 1,39 CHPP - Reclaim and Conveying to TLO (3 transfer point 4,17 - Underground - - CHPP - Conveyor to UG 1pit top 38 CHPP - Lindad to ROM stockpile 1,02 CHPP - Transfer to sizing station (at product cal stocid) 1,02 CHPP - Nectaim and conveyor to TLO (3 transfer points) 3,07 Dozers - - CHPP - Conveying rejects from CHPP to loadout 18 CHPP - Conveying rejects from CHPP to loadout 18 CHPP - Loader projects 14 CHPP - Londating rejects 126,67 CHPP - Hauling rejects 126,67 CHPP - Loader wining area (pit, active dumping area) (O 8,71 OC1 - Active mining area (pit, active dumping area) (O 51,55		81 10 59 100 76 299 21 15 51 18 84 73	16,000,000 0.2 12,543,993 12,543,993 0.3	tonnes/year ha tonnes/year	0.40			kg/ha/hour													
CHPP - Conveying to CHPP Product Stockpile (OC) 20 CHPP - Unbadding to CHPP Product Stockpile (OC) 1,39 CHPP - Inclaim and Conveying to TLO (3 transfer poin 4,17 Underground 6HPP - Conveyor transfer point at UG portal entrance 31 CHPP - Conveyor transfer point at UG portal entrance 31 CHPP - Conveyor transfer point at UG portal entrance 31 CHPP - Conveyor transfer to sking station (at product coal stoc) 1,02 CHPP - Inclast to ROM stockpile 1,02 CHPP - Neclaim and conveyor to TLO (3 transfer points 3,07 Dozer 7 CHPP - Dozer pushing ROM coal at UG1 pit top 27,74 CHPP - Loncer pushing Product coal 59,52 Rejects 14 CHPP - Londer predicts 14 CHPP - Loading rejects 14 CHPP - Loading rejects 14 CHPP - Loading rejects 14 CHPP - Unbading rejects 14 ChPP - Loading rejects 14 CHP - Loading rejects 14 CHP - Loading rejects 14 CHP - Loading rejects 14	8 6 3 6 9 1,9 0 1 36 1 44 4 44 4	81 10 59 100 76 299 21 15 51 18 84 73	0.2 12,543,993 12,543,993 0.3	ha tonnes/year	0.000	0.2			8,760	hours											70 % Contro
CHPP - Unloading to CHPP Product Stockpile (OC) 1,33 CHPP - Reclaim and Conveying to TLO (3 transfer poin 4,17 Underground 3 CHPP - Conveyor to UG1 pit top 3 CHPP - Lonoyey to tuG1 pit top 3 CHPP - Unload to ROM stockpile 1,02 CHPP - Transfer point still (4 product coal stoc) 1,02 CHPP - Indicat to product stockpile 1,02 CHPP - Transfer point still (3 transfer points) 3,07 Dozers 0,02 CHPP - Lozer pushing ROM coal at UG1 pit top 27,74 CHPP - Conveying rejects from CHPP to loadout 18 CHPP - Conveying rejects 126,67 CHPP - Loader pushing ROM coal (2 uprass) at product 18 126,67 CHPP - Loader pushing rejects 126,67 CHPP - Loader pushing rejects 126,67 CHPP - Loading rejects 126,67 CHP - Loading rej	3 6 9 1,9 0 1 36 1 44 4 44 4	59 100 76 299 21 15 51 18 84 73	12,543,993 12,543,993 0.3	tonnes/year	0.000	0.2															
CHPP - Reclaim and Conveying to TLO (3 transfer point 4,17 Underground 31 CHPP - Conveyor to UG1 pit top 38 CHPP - Londad to ROM stockpile 38 CHPP - Unload to ROM stockpile 1,02 CHPP - Unload to ROM stockpile 1,02 CHPP - Londad to product stockpile 1,02 CHPP - Notad to product stockpile 1,02 CHPP - Notad to product stockpile 1,02 CHPP - Notad to product stockpile 1,02 CHPP - Notage pushing ROM coal at UG1 pit top 2,7,4 CHPP - Dozer pushing ROM coal (bypass) at product si 3,751 CHPP - Londing relects 59,52 CHPP - Loading relects 146 CHPP - Loading relects 126,67 CHPP - Loading relects 14 CHPP - Loading relects 14 CHPP - Hundading relects 14 CHPP - Loading relects 14 CHP - Loading relects 14 CHP - Hundading relects <td>9 1,9 0 1 66 1 44 4 44 4 44 4</td> <td>76 299 21 15 51 18 84 73</td> <td>12,543,993 0.3</td> <td></td> <td></td> <td></td> <td></td> <td>kg/ha/hour</td> <td>8,760</td> <td></td> <td>70 % Contro</td>	9 1,9 0 1 66 1 44 4 44 4 44 4	76 299 21 15 51 18 84 73	12,543,993 0.3					kg/ha/hour	8,760												70 % Contro
Underground CHPP CHPP Conveyor transfer point at UG portal entrance 31 CHPP Conveyor to UG pit top 38 CHPP Indication (at product coal stoc) 1,02 CHPP - Notad to product stockpile 3,07 Dozern SchPP - Dozer pushing ROM coal at UG 1 pit top 27,74 CHPP - Dozer pushing ROM coal (bypass) at product s 37,51 CHPP - Dozer pushing ROM coal (bypass) at product s 37,51 CHPP - Conveying rejects from CHPP to loadout 18 CHPP - Hauling rejects 126,67 CHPP - Hauling rejects 14 CHPP - Hauling rejects 14 CHPP - Hauling rejects 14 </td <td>0 11 36 1 34 4 34 4 34 4 34 4</td> <td>21 15 51 18 84 73</td> <td>0.3</td> <td>tonnes/year</td> <td></td> <td></td> <td></td> <td>kg/t</td> <td>0.893</td> <td>(WS/2.2)^{1.3} in m/</td> <td>10</td> <td>MC in %</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	0 11 36 1 34 4 34 4 34 4 34 4	21 15 51 18 84 73	0.3	tonnes/year				kg/t	0.893	(WS/2.2) ^{1.3} in m/	10	MC in %									
CHPP - Conveyor transfer point at UG portal entrance 31 CHPP - Conveyor to UG 1 pit top 38 CHPP - Unload to ROM stockpile 1,02 CHPP - Unload to product stockpile 1,02 CHPP - Unload to product stockpile 1,02 CHPP - Unload to product stockpile 1,02 CHPP - Neclaim and conveyor to TLO (3 transfer points 3,07 Dozers 37,51 CHPP - Dozer pushing ROM coal at UG1 pit top 27,74 CHPP - Dozer pushing ROM coal (bypass) at product s 3,51 CHPP - Dozer pushing ROM coal (bypass) at product 37,51 59,52 CHPP - Conveying rejects from CHPP to loadout 18 CHPP - Loading rejects 146,67 CHPP - Hauling rejects 14 CHPP - Hauling rejects 14 CHPP - Loading rejects 14 CHPP - Loading rejects 14 CHP - Loading rejects 14	36 1 24 4 24 4 24 4	51 18 84 73			0.000	0.00005	0.00001	kg/t	0.893	(WS/2.2) ^{1.3} in m/	10	MC in %									
CHPP - Conveyor to UG1 pit top 38 CHPP - Innaster to sizing station (at product coal stock)le 1,02 CHPP - Transfer to sizing station (at product coal stock)le 1,02 CHPP - Innaster to sizing station (at product coal stock)le 1,02 CHPP - Note and conveyor to TLO (3 transfer points) 3,07 Dozer Dushing ROM coal at UG1 pit top 27,74 CHPP - Dozer pushing ROM coal (bypass) at product s 3,751 CHPP - Dozer pushing ROM coal (bypass) at product s 37,51 CHPP - Dozer pushing ROM coal (bypass) at product s 37,51 CHPP - Dozer pushing ROM coal (bypass) at product s 37,51 CHPP - Load (at predict stations) 59,52 CHP - Load (at predict stations) 14 CHP - Load (at predict stations) 14 CHP - Load (at predicts) 14 CHP - Load (at predicts) 14 CHP - Load (at predicts) 16 CHP - Load (36 1 24 4 24 4 24 4	51 18 84 73																			
CHPP - Lunload to ROM stockpile 1,02 CHPP - Lunload to product stockpile 1,02 CHPP - Inload to product stockpile 1,02 CHPP - Neclaim and conveyor to TLO (3 transfer points 3,07 Dozers 27,74 CHPP - Dozer pushing ROM coal at UG1 pit top 27,74 CHPP - Dozer pushing ROM coal (bypas) at product s' 3,51 CHPP - Dozer pushing ROM coal (bypas) at product s' 59,52 Rejects 14 CHPP - Loare pushing ROM coal (bypas) at product s' 14 CHPP - Novering rejects from CHPP to loadout 18 CHPP - Loare pushing ROM coal study at state s	4 4 4 4 4 4	84 73		ha	0.40	0.2	0.0	kg/ha/hour	8,760	hours											70 % Contro
CHPP - Irransfer to sizing station (at product coal stool 1,02 CHPP - Irransfer to sizing station (at product coal stool 1,02 CHPP - Roctains and conveyor to TLO (3 transfer points 3,07 Dozers 2,74 CHPP - Dozer pushing ROM coal at UG1 pit top 2,7,47 CHPP - Dozer pushing ROM coal (bypass) at product s 3,751 CHPP - Dozer pushing ROM coal (bypass) at product s 3,751 CHPP - Dozer pushing rejects 164 CHPP - Conveying rejects from CHPP to loadout 18 CHPP - Loading rejects 126,67 CHPP - Hauling rejects 14 Wind Erosion 0 OC1 - Active mining area (pit, active dumping area) (O 51,50	4 4		0.4	ha	0.40	0.2	0.0	kg/ha/hour	8,760	hours											70 % Contro
CHPP - Unload to product stockpile 1,02 CHPP - Reclaim and conveyor to TLO (3 transfer points 3,07 Dozers 2 CHPP - Dozer pushing ROM coal at UG1 pit top 27,74 CHPP - Lozer pushing ROM coal at UG1 pit top 27,74 CHPP - Dozer pushing ROM coal (bypass) at product s 37,51 Rejects 59,52 CHPP - Lozer pushing ROM coal (bypass) at product s 18 CHPP - Lozer pushing ROM coal (bypass) at product s 14 CHPP - Loading rejects 126,67 CHPP - Hauling rejects 126,67 CHPP - Loading rejects 126,67 CHP - Loading rejects 126,67 CO - Active mining area (pit, active dumping area) (O 57,50	4 4		6,050,000	tonnes/year	0.000	0.00008	0.00001	kg/t	0.893	(WS/2.2) ^{1.3} in m/	7.4	MC in %									
CHPP - Reclaim and conveyor to TLO (3 transfer points 3,07 Dozers - (CHPP - Dozer pushing ROM coal at UG1 pit top 27,74 (CHP - Dozer pushing ROM coal (bypass) at product s 37,51 (CHP - Dozer pushing Product coal 37,51 (CHPP - Lozer pushing Product coal 64,64 (CHP - Lozer pushing Product coal 14 (CHP - Lozer pushing rejects 14 (CHP - Lozer ding rejects 14 (CHP - Hauling rejects 126,67 (CHP - Loading rejects 14 (CHP - Loading rejects) 150 <t< td=""><td></td><td>84 73</td><td>6,050,000</td><td>tonnes/year</td><td>0.000</td><td>0.00008</td><td>0.00001</td><td>kg/t</td><td></td><td>(WS/2.2)^{1.3} in m/</td><td></td><td>MC in %</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		84 73	6,050,000	tonnes/year	0.000	0.00008	0.00001	kg/t		(WS/2.2) ^{1.3} in m/		MC in %									
Dozers 27,74 CHPP - Dozer pushing ROM coal at UG1 pit top 27,74 CHPP - Dozer pushing ROM coal (bypass) at product s 37,51 CHPP - Dozer pushing Product coal 59,52 Rejects 59,52 CHPP - Conveying rejects from CHPP to loadout 18 CHPP - Loading rejects 14 CHPP - Hauling rejects 126,67 CHPP - Indading rejects 14 CHPP - Loading rejects 14 CHPP - Loading rejects 126,67 OCI - Active mining area (pit, active dumping area) (O 57,50 OCI - Active mining area (pit, active dumping area) (O 51,50	2 1,4	84 73	6,050,000	tonnes/year	0.000	0.00008	0.00001	kg/t		(WS/2.2) ^{1.3} in m/		MC in %									
CHPP - Dozer pushing ROM coal at UC1 pit top 27,74 CHPP - Dozer pushing ROM coal (bypass) at product s' 37,51 CHPP - Dozer pushing ROM coal (bypass) at product s' 59,52 Rejects 59,52 CHPP - Loading rejects from CHPP to loadout 18 CHPP - Loading rejects 14 CHPP - Holding rejects 126,67 CHPP - Holding rejects 14 Wind Frostion 14 OC1 - Active mining area (pit, active dumping area) (O 51,50		53 220	6,050,000	tonnes/year	0.000	0.00008	0.00001	kg/t		(WS/2.2) ^{1.3} in m/		MC in %									
CHPP - Dozer pushing ROM coal (bypass) at product s 37,51 CHPP - Dozer pushing Product coal 59,52 Rejects 1 CHPP - Conveying rejects from CHPP to loadout 18 CHPP - Loading rejects 14 CHPP - Hauling rejects 14 CHPP - Hauling rejects 126,67 CHPP - Hauling rejects 14 CHPP - Loading rejects 14 OPP - Undoaling rejects 14 Wind Erosion 0 OC1 - Active mining area (plt, active dumping area) (O 51,50																					
CHPP - Dozer pushing Product coal 59,52 Rejects 59,52 CHPP - Conveying rejects from CHPP to loadout 18 CHPP - Loading rejects 14 CHPP - Unloading rejects 126,67 CHPP - Unloading rejects 14 Wind Frostien 14 OC1 - Active mining area (pit, active dumping area) (O 51,50	6 6,5	45 610	3,048	hours/year	18.2	4.3	0.4	kg/h	5	SC in %	7.4	MC in %									50 % Contro
Rejects 18 CHPP - Loading rejects from CHPP to loadout 18 CHPP - Loading rejects 14 CHPP - Hauling rejects 126,67 CHPP - Hauling rejects 126,07 CHPP - Loading rejects 14 Wind Erosion 001 - Active mining area (pit, active dumping area) (O OC1 - Active mining area (pit, active dumping area) (O 51,50	7 8,5	88 825	6,096	hours/year	12.3	2.8	0.3	kg/h	5	SC in %	10	MC in %									50 % Contro
Rejects 18 CHPP - Loading rejects from CHPP to loadout 18 CHPP - Loading rejects 14 CHPP - Hauling rejects 126,67 CHPP - Undoing rejects 14 Wind Erosion 00 OC1 - Active mining area (pit, active dumping area) (O 51,50	6 12,7	43 1.310	12.642	hours/vear	9.4	2.0	0.2	ka/h	4	SC in %	10	MC in %									50 % Contro
CHPP - Loading rejects 18 CHPP - Loading rejects 14 CHPP - Hauling rejects 146 CHPP - Hauling rejects 126,67 CHPP - Unloading rejects 14 Oct - Active mining area (pit, active dumping area) (O 57,150 Oct - Active mining area (pit, active dumping area) (O 51,500																					
CHPP - Loading rejects 14 CHPP - Hauling rejects 126,67 CHPP - Unloading rejects 14 Wind Frosion 0 OC1 - Active mining area (pit, active dumping area) (O 57,50	3	72 9	0.17	ha	0.40	0.2	0.0	kg/ha/hour	8,760	hours											70 % Contro
CHPP - Hauling rejects 126.67 CHPP - Unloading rejects 14 Wind Erosion 0C1 - Active mining area (pit, active dumping area) (O 8,71 OC1 - Active mining area (pit, active dumping area) (O 51.50		69 10	3.456.006	tonnes/vear	0.000	0.00002	0.00000	ka/t		(WS/2.2) ^{1.3} in m/	20	MC in %									
CHPP - Unloading rejects 14 Wind Erosion OC1 - Active mining area (pit, active dumping area) (0 8,71 OC1 - Active mining area (pit, active dumping area) (0 51,50				tonnes/year	0.364	0.090	0.009	ka/t		tonnes/load		km/return tr	4.9	1.2	0.1 k	a/VKT	4.2 9	% silt conten	234	Ave GMV	90 % Control
Wind Erosion OC1 - Active mining area (pit, active dumping area) (O 8,71 OC1 - Active mining area (pit, active dumping area) (O 51,50	5	69 10		tonnes/vear	0.000	0.00002	0.00000	ka/t	0.893	(WS/2.2) ^{1.3} in m/	20	MC in %				5					
OC1 - Active mining area (pit, active dumping area) (0 51,50										(10)2.2) 11110											
OC1 - Active mining area (pit, active dumping area) (0 51,50	3 4.3	56 653	10	ha	0.10	0.05	0.007	kg/ha/hour	8.760	hours											
	2 25.7	51 3.863	61	ha	0.10	0.05	0.007	kg/ha/hour	8,760	hours											
			11.71		0.10	0.05	0.007	kg/ha/hour	8,760												50 % Contro
OC1 - Inactive area (no rehabilitation) (OC1 south) 5,57			13.12		0.10	0.05	0.007	kg/ha/hour	8,760												50 % Contro
OC1 - Partially rehabilitated (e.g. stable and seeded) 12,12			47.54		0.10	0.05	0.007	kg/ha/hour	8,760												70 % Contro
OC1 - Hard Stand Areas (Workshops, roads, conveyor 105,23			123.81		0.10	0.05	0.007	kg/ha/hour	8,760												
OC2 - Active mining area (pit, active dumping area) 51,17			60.20		0.10	0.05	0.007	kg/ha/hour	8,760												
OC2 - Inactive area (no rehabilitation) 1,21		08 91	2.86		0.10	0.05	0.007	kg/ha/hour		hours											50 % Contro
OC2 - Partially rehabilitated (e.g. stable and seeded) 21,22			83.23		0.10	0.05	0.007	kg/ha/hour	8,760												70 % Contro
OC2 - Hard Stand Areas (Workshops, roads, conveyor 17,85			21.00		0.10	0.05	0.007	kg/ha/hour	8,760												70 70 001110
OC3 - Active mining area (pit, active dumping area) 120.31			141.55		0.10	0.05	0.007	kg/ha/hour	8,760												
OC3 - Inactive area (no rehabilitation) -	0 00,	-		ha	0.10	0.05	0.007	kg/ha/hour		hours					_						50 % Contro
OC3 - Partially rehabilitated (e.g. stable and seeded) 16,11	1 8.0		63.18		0.10	0.05	0.007	kg/ha/hour	8,760						-						70 % Contro
OC3 - Hard Stand Areas (Workshops, roads, conveyor 31,96			37.61		0.10	0.05	0.007	kg/ha/hour	8,760						-						70 70 001110
OC4 - Active mining area (pit, active dumping area) 168,90			198.71		0.10	0.05	0.007	kg/ha/hour		hours					-						
OC4 - Inactive area (no rehabilitation) 16.97			39.93		0.10	0.05	0.007	kg/ha/hour	8,760												50 % Contro
OC4 - Partially rehabilitated (e.g. stable and seeded) 18,20			71.38		0.10	0.05	0.007	kg/ha/hour	8,760												70 % Contro
OC4 - Hard Stand Areas (Workshops, roads, conveyor 28,96			34.08		0.10	0.05	0.007	kg/ha/hour	8,760					-	-						70 70 001110
Stockpile - ROM coal stockpile (OC1) 3,10			7.31		0.10	0.05	0.007	kg/ha/hour	8,760	hours					-						50 % Contro
Stockpile - ROM coal stockpile (UG) 76		85 58			0.10	0.05	0.007	kg/ha/hour		hours					-						50 % Contro
Stockpile - ROM coal stockpile (OC3) 1,47		35 110	3.46		0.10	0.05	0.007	kg/ha/hour		hours											50 % Contro
Stockpile - ROM coal stockpile (OC4) 3,33			7.85		0.10	0.05	0.007	kg/ha/hour		hours											50 % Contro
Stockpile - Roll coal Stockpile (0C4) 3,33 Stockpile - Bypass Coal Stockpile -	0 1,0			ha	0.10	0.05	0.007	kg/ha/hour	8,760												50 % Contro
Stockpile - Product Coal Stockpile 2,38			5.61		0.10	0.05	0.007	kg/ha/hour	8,760												50 % Contro
2,30 Z,30	- 1,1	1/7	5.01		0.10	0.00	0.007	sgriariou	0,700	10013											30 % 001110
Grading roads 141.79	6 49.5	43 4.396	230.388	km	0.62	0.22	0.02	ka/VKT	9	speed of graders	0.6575	hours utilise	d/total	hours	-						
Total TSP emissions (kg/yr) 5,439,254			230,300	ISO .	0.02	0.22	0.02	NG/ VINT	0	spead of gradel:	0.0375	nours utilise	ariotal		-						

Note: ha = hectares, SC=silt content, kg/h = kilograms/hour, WS = wind speed, MC = moisture content.

						abic c	J. Liiii	ssion inven	tory	1001 2021												
ACTIVITY	TSP emission	PM10 emission	PM25 emission	Intensity	Units	Emission Factor - TSP	Emission Factor - PM10	Emission Factor - Units PM25	Variable 1	Units	Variable 2	Units	Variab le 3 - TSP	ble 3	Varia ble 3 · PM25	Units	Varia ble 4	Units	Varia ble 5	Units	Varia ble 6	Units
Overbuden																						
OB - Stripping Topsoil - OC1	1.290	504	61	92	hours/vear	14.0	5.5	0.7 ka/h	450	total hours/vear												
OB - Stripping Topsoil - OC2	-	-	-	-	hours/year	14.0	5.5	0.7 kg/h	450	total hours/year												
OB - Stripping Topsoil - OC3	1.470	575	69	105	hours/year	14.0	5.5	0.7 kg/h	450	total hours/year												
OB - Stripping Topsoil - OC4	3,540	1,384	166	253	hours/year	14.0	5.5	0.7 kg/h	450	total hours/year												
OB - Drilling - OC1	1,155	600	35	6,523	holes/year	0.59	0.31	0.02 kg/hole	0.00074	holes/bcm											70	% Control
OB - Drilling - OC2	-	-	-	-	holes/year	0.59	0.31	0.02 kg/hole		holes/bcm											70	% Control
OB - Drilling - OC3	1,316	684	39	7,433	holes/year	0.59	0.31	0.02 kg/hole	0.00074	holes/bcm											70	% Control
OB - Drilling - OC4	4,351	2,262	131	24,580	holes/year	0.59	0.31	0.02 kg/hole	0.00074	holes/bcm											70	% Control
OB - Blasting - OC1	10,582	5,503	317	19	blasts/year	572	297.2	17.1 kg/blas	18,900	Area of blast in r	0.0000021	blasts/bcm										
OB - Blasting - OC2	-	-	-	-	blasts/year	572	297.2	17.1 kg/blas	18,900	Area of blast in r	0.0000021	blasts/bcm										
OB - Blasting - OC3	12,057	6,270	362	21	blasts/year	572	297.2	17.1 kg/blas	18,900	Area of blast in r	0.0000021	blasts/bcm										
OB - Blasting - OC4	39,874	20,734	1,196	70	blasts/year	572	297.2	17.1 kg/blas	18,900	Area of blast in r	0.0000021	blasts/bcm										
OB - Excavator loading OB to haul truck - OC1	20,496	9,694	1,468	19,393,058	tonnes/year	0.001	0.00050	0.00008 kg/t	0.893	(WS/2.2) ^{1.3} in m/		MC in %	2.2			tonnes/BCM						
OB - Excavator loading OB to haul truck - OC2	-	-	-	-	tonnes/year	0.001	0.00050	0.00008 kg/t	0.893	(WS/2.2) ^{1.3} in m/		MC in %	2.2			tonnes/BCM						
OB - Excavator loading OB to haul truck - OC3	23,355	11,046	1,673		tonnes/year	0.001	0.00050	0.00008 kg/t		(WS/2.2)1.3 in m/		MC in %	2.2			tonnes/BCM						
OB - Excavator loading OB to haul truck - OC4	56,226	26,593	4,027	53,199,124	tonnes/year	0.001	0.00050	0.00008 kg/t	0.893	(WS/2.2) ^{1.3} in m/	2	MC in %	2.2			tonnes/BCM	72.8 %	OB excavate	or only			
OB - Excavator rehandle - OC1	512	242	37	484,826.44	tonnes/year	0.001	0.00050	0.00008 kg/t	0.893	(WS/2.2) ^{1.3} in m/	2	MC in %	2.2			tonnes/BCM		OB rehandle				
OB - Excavator rehandle - OC3	584	276	42		tonnes/year	0.001	0.00050	0.00008 kg/t	0.893	(WS/2.2) ^{1.3} in m/		MC in %	2.2			tonnes/BCM		OB rehandle				
OB - Excavator rehandle - OC4	1,699	804	122	1,607,666	tonnes/year	0.001	0.00050	0.00008 kg/t	0.893	(WS/2.2) ^{1.3} in m/	2	MC in %	2.2			tonnes/BCM	2.2 %	OB rehandle				
OB - Hauling to dump - OC1	146,817	38,663	6,447	19,393,058	tonnes/year	0.074	0.018	0.002 kg/t		tonnes/load		km/return tr	5.3	1.3	0.1	kg/VKT	4.2 %	silt content		Ave GMV (ton		% Control
OB - Hauling to dump - OC2	-			-	tonnes/year	0.074	0.018	0.002 kg/t	215	tonnes/load		km/return tr	5.3	1.3	0.1	kg/VKT		silt content		Ave GMV (ton		% Control
OB - Hauling to dump - OC3	101,727	27,785	5,719		tonnes/year	0.045	0.011	0.001 kg/t		tonnes/load		km/return tr	5.3	1.3		kg/VKT		silt content		Ave GMV (ton		% Control
OB - Hauling to dump - OC4 (930 E)	101,353	27,638	5,642	26,599,562		0.037	0.009	0.001 kg/t		tonnes/load		km/return tr	5.8	1.4		kg/VKT		silt content	344	Ave GMV (ton		% Control
OB - Hauling to dump - OC4 (830 E)	221,105	57,926	9,333		tonnes/year	0.082	0.020	0.002 kg/t		tonnes/load		km/return tr	5.3	1.3	0.1	kg/VKT	4.2 %	silt content	279	Ave GMV (ton	90	% Control
OB - Emplacing at dump - OC1	20,496	9,694	1,468	19,393,058	tonnes/year	0.001	0.00050	0.00008 kg/t		(WS/2.2) ^{1.3} in m/		MC in %										
OB - Emplacing at dump - OC2	-		-	-	tonnes/year	0.001	0.00050	0.00008 kg/t		(WS/2.2)1.3 in m/		MC in %										
OB - Emplacing at dump - OC3	23,355	11,046	1,673		tonnes/year	0.001	0.00050	0.00008 kg/t		(WS/2.2)1.3 in m/		MC in %										
OB - Emplacing at dump - OC4	56,226	26,593	4,027	53,199,124		0.001	0.00050	0.00008 kg/t	0.893	(WS/2.2)1.3 in m/		MC in %										
OB - Dozers on OB (dump and pit) - OC1	134,636	32,536	14,137	8,045		16.7	4.0	1.8 kg/h		SC in %		MC in %										
OB - Dozers on OB (dump and pit) - OC2	-	-	-	-	hours/year	16.7	4.0	1.8 kg/h		SC in %		MC in %									$ \longrightarrow $	
OB - Dozers on OB (dump and pit) - OC3	149,664	36,167	15,715		hours/year	16.7	4.0	1.8 kg/h		SC in %		MC in %									$ \longrightarrow $	
OB - Dozers on OB (dump and pit) - OC4	844,749	204,139	88,699	50,477	hours/year	16.7	4.0	1.8 kg/h	10	SC in %	2	MC in %									$ \longrightarrow $	
Coal																					$ \longrightarrow $	
CL - Drilling - OC1	82	43	2	2,741	holes/year	0.10	0.05	0.00 kg/hole		Holes/tonne ROM												% Control
CL - Drilling - OC2	-		-	-	holes/year	0.10	0.05	0.00 kg/hole		Holes/tonne ROM												% Control
CL - Drilling - OC3	218	113	7		holes/year	0.10	0.05	0.00 kg/hole		Holes/tonne ROM												% Control
CL - Drilling - OC4	176	91	5		holes/year	0.10	0.05	0.00 kg/hole		Holes/tonne ROM											70	% Control
CL - Blasting - OC1	6,831	3,552	205	8	blasts / year	859	446.8	25.8 kg/blas		Area of blast in r											+	
CL - Blasting - OC2	-	-	-	-	blasts / year	859	446.8	25.8 kg/blas		Area of blast in r											$ \longrightarrow $	
CL - Blasting - OC3	18,086 14,577	9,405	543 437		blasts / year	859	446.8 446.8	25.8 kg/blas		Area of blast in r Area of blast in r											\vdash	
CL - Blasting - OC4					blasts / year	859		25.8 kg/blas					ROM								50	
CL - Dozers ripping/pushing/clean-up - OC1	17,232	4,065	379	1,893	hours/year	18.2	4.3	0.4 kg/h 0.4 ka/h		SC in % SC in %		MC in % MC in %										% Control % Control
CL - Dozers ripping/pushing/clean-up - OC2	- 45.633	- 10.765	- 1.004	-	hours/year	18.2	4.3	0.4 kg/h		SC in %		MC in % MC in %										% Control % Control
CL - Dozers ripping/pushing/clean-up - OC3 CL - Dozers ripping/pushing/clean-up - OC4	36,776	8,675	809		hours/year hours/year	18.2	4.3	0.4 kg/n		SC in %		MC in %										% Control
CL - Loading ROM coal to haul truck - OC1	143.987	20,229	2.736	2,741,398		0.053	4.3	0.4 kg/n		MC in %	7.4										50	% Control
CL - Loading ROM coal to haul truck - OC1	143,987	20,229	2,730	2,741,398	tonnes/year	0.053	0.007	0.001 kg/t		MC in %											⊢ →	
CL - Loading ROM coal to haul truck - OC2	381.244	53.561	7.244	7.258.602		0.053	0.007	0.001 kg/t		MC in %											\vdash	
CL - Loading ROM coal to haul truck - OC3	381,244	43,169	5.838	5.850.284		0.053	0.007	0.001 kg/t		MC in %					-						⊢	
CL - Loading ROM coal to haul truck - OC4 CL - Hauling ROM to hopper - OC1	307,275	20,313	2,684	2,741,398		0.053	0.007	0.001 kg/t		tonnes/load	10.6	km/return tr	4.9	1.2	0.1	kg/VKT	12 0/	silt content	234	Ave GMV (ton	00	% Control
CL - Hauling ROM to hopper - OC1	/7,568	20,313	2,084	2,741,398	tonnes/year	0.288	0.071	0.007 kg/t		tonnes/load	16.0	km/return tr	4.9			kg/VKT		silt content		Ave GMV (ton Ave GMV (ton		% Control
CL - Hauling ROM to hopper - 0C2	476.588	- 119.757	13.703	7.258.602		0.434	0.108	0.011 kg/t		tonnes/load		km/return tr	4.9			kg/VKT kg/VKT		silt content		Ave GMV (ton		% Control
CL - Hauling ROM to hopper - OC3 CL - Hauling ROM to hopper - OC4	476,588 87.310	22,869	3.679	7,258,602		0.654	0.162	0.016 kg/t		tonnes/load		km/return tr km/return tr	4.9			kg/VKT		silt content		Ave GMV (ton Ave GMV (ton		% Control % Control
CL - Unload to hopper or stockpile for washing (OC1,	236.354	33,206	4,491	9.000.000		0.053	0.038	0.004 kg/t		MC in %	5.4	KIIVIEUIIIIU	4.7	1.2	0.1	NG/ VINT	4.2 /0	an coment	234	AVE GIVIV (LOTI		% Control
CL - Unload to hopper or stockpile for washing (OC1, CL - Unload to hopper or stockpile (OC4)	153,637	21,585	2,919	5,850,284		0.053	0.007	0.001 kg/t		MC in %					<u> </u>							% Control
CL - Rehandling - (OC1 + OC2 + OC3) - at hopper for	125,929	17,692	2,919	2,397,600		0.053	0.007	0.001 kg/t		MC in %					1						50	70 CONTON
CL - Rehandling - (OC1 + OC2 + OC3) - at hopper for CL - Rehandling - OC4 - at hopper	81.858	11,692	2,393		tonnes/year	0.053	0.007	0.001 kg/t		MC in %					-						⊢ −+	
CL - Renanding - OC4 - at hopper CHPP - Transfer to Sizing Station (OC4)	990	468	71		tonnes/year	0.000				(WS/2.2) ^{1.3} in m/	7 4	MC in %			-						$ \rightarrow $	
oner - mansier to sizing station (004)	990	468	/1	5,850,284	tormes/year	0.000	0.00008	0.00001 kg/t	0.893	(ws/2.2) in m/	<u>9</u> 7.4	IVIC III 76	I	I						1	<u>ا</u>	

Table C-3: Emission inventory – Year 2021

·	TSP	PM10	PM25			Emission	Emission			Variable				Variab		Varia		Varia		Varia		Varia	
ACTIVITY	emission (kg/y)	emission (kg/y)	emission (kg/y)	Intensity	Units	Factor - TSP	Factor - PM10	Factor - PM25	Units	1	Units	Variable 2	Units	le 3 - TSP	ble 3 · PM10		Units	ble 4	Units	ble 5	Units	ble 6	Units
Bypass	(3/1/	(3/1/)	(3/1/																				
CL - bypass - direct dumping at bypass stockpile (OC)	169	80	12	1.000.000	tonnes/vear	0.000	0.00008	0.00001	ka/t	0.893 /	WS/2.2) ^{1.3} in m	7.4	MC in %										
CL - bypass - conveying to bypass stockpile (OC4) (1	205	97	15			0.000	0.00008				WS/2.2) ^{1.3} in m		MC in %										
CL - bypass - discharge to bypass stockpile (OC4)	205	97	15		tonnes/year	0.000	0.00008				WS/2.2) ^{1.3} in m		MC in %										
CL - bypass - transfer station (OC)	374	177	27	2,209,935	tonnes/year	0.000	0.00008	0.00001	kq/t		WS/2.2) ^{1.3} in m		MC in %										
CL - bypass - bypass coal sizing station	5,967	2,652	280	2,209,935	tonnes/year	0.0027	0.00120	0.0	kg/t														
CL - bypass - OC bypass coal conveyed to product sto	376	147	18	0.36	ha	0.40	0.2	0.0	kg/ha	/ 8,760	hours											70	% Control
CL - bypass - bypass coal conveyed to TLO (3 transfe	1,122	531	80	2,209,935	tonnes/year	0.000	0.00008	0.00001	kg/t	0.893 (WS/2.2) ^{1.3} in m	5.4	MC in %										
Open Cut																							
CHPP - Conveying to Sizing Station (OC1+OC2+OC3)	158	62	7	0.15		0.40	0.2		kg/ha													70	% Control
CHPP - Transfer to Sizing Station (OC4)	785	371	56		tonnes/year	0.000	0.00008			0.893 (WS/2.2) ^{1.3} in m	7.4	MC in %										
CHPP - Sizing Station (OC1+OC2+OC3+OC4)	36,829	16,368	1,731	13,640,349		0.0027	0.00120		kg/t	0.7(0)												70	
CHPP - Conveying to CHPP (OC)	39	15	2			0.40	0.2	0.0	kg/ha	/ 8,760	nours											70	% Control
CHPP - Washing (OC) CHPP - Conveying to CHPP Product Stockpile (OC)	- 208	- 81	- 10	13,640,349 0.2	tonnes/year	0.40	0.2	0.0	kg/ha	/ 8.760	hours											70	% Control
CHPP - Unloading to CHPP Product Stockpile (OC)	1.195	565	86			0.40	0.00005				WS/2 2) ^{1.3} in m	10	MC in %									70	% Control
CHPP - Onloading to CHPP Product Stockpile (OC) CHPP - Reclaim and Conveying to TLO (3 transfer poin	4,321	2.044		12,972,474		0.000	0.00005						MC in %										
Underground	4,321	2,044	310	12,912,414	connes/year	0.000	0.00005	0.00001	кдл	0.893 (WS/2.2) ^{1.3} in m	9 10			I								
CHPP - Conveyor transfer point at UG portal entrance	310	121	15	0.3	ha	0.40	0.2	0.0	kg/ha	/ 8,760	bours											70	% Control
CHPP - Conveyor to UG1 pit top	386	151	13	0.3		0.40	0.2		kg/ha														% Control
CHPP - Unload to ROM stockpile	1.354	640	97			0.000	0.00008				WS/2.2) ^{1.3} in m	7.4	MC in %									70	76 CONTO
CHPP - Transfer to sizing station (at product coal stoc	1,354	640	97		tonnes/year	0.000	0.00008				WS/2.2) In m		MC in %										
CHPP - Unload to product stockpile	1,354	640	97	8,000,000	tonnes/year	0.000	0.00008				WS/2.2) ^{1.3} in m		MC in %										
CHPP - Reclaim and conveyor to TLO (3 transfer point	4,062	640	97	8,000,000		0.000	0.00008				WS/2.2) In m WS/2.2) ^{1.3} in m		MC in %										
Dozers	4,002	-	-	0,000,000	torine si yeur	0.000	0.00000	0.00001	Ng/T	0.070 (<u>vv 3/2.2)</u> III III		110 11 70										
CHPP - Dozer pushing ROM coal at UG1 pit top	36.694	8.656	807	4.031	hours/year	18.2	4.3	0.4	ka/h	5 5	iC in %	7.4	MC in %									50	% Control
CHPP - Dozer pushing ROM coal (bypass) at bypass s	13,712	3,139	302		hours/year	12.3	2.8		kg/h		iC in %		MC in %										% Control
CHPP - Dozer pushing washed Product coal	51.069	10,933	1,124		hours/year	9.4	2.0		ka/h		iC in %		MC in %										% Control
CHPP - Dozer pushing bypass (UG + OC) Product coal	48,452	10.372	1.066		hours/year	9.4	2.0		ka/h		iC in %		MC in %										% Control
Rejects		-	-																				
CHPP - Conveying rejects from CHPP to loadout	183	72	9	0.17	ha	0.40	0.2	0.0	kg/ha	/ 8,760	hours											70	% Control
CHPP - Loading rejects	121	57	9	2,877,809	tonnes/year	0.000	0.00002	0.00000	kq/t	0.893 (WS/2.2) ^{1.3} in m	20	MC in %										
CHPP - Hauling rejects	114,889	29,101	3,595	2,877,809	tonnes/year	0.396	0.098	0.010	kg/t		onnes/load		km/return t	4.9	1.2	0.1	kg/VKT	4.2 9	6 silt content	234	Ave GMV (tor	ור 90	% Control
CHPP - Unloading rejects	121	57	9	2,877,809	tonnes/year	0.000	0.00002	0.00000	kg/t	0.893 (WS/2.2) ^{1.3} in m	20	MC in %										
Wind Erosion		-	-																				
OC1 - Active Mining Area	31,152	15,576	2,336	36.65		0.10	0.05	0.007															
OC1 - Inactive area (no rehabilitation)	4,977	2,488	373	11.71		0.10	0.05	0.007	kg/ha	/ 8,760	hours											50	% Control
OC1 - Partially rehabilitated (e.g. stable and seeded)	2,614	1,307	196	10.25		0.10	0.05	0.007															% Control
OC1 - Partially rehabilitated (e.g. stable and seeded)	19,502	9,751	1,463	76		0.10	0.05	0.007														70	% Control
OC1 - Hard Stand Areas (Workshops, roads, conveyor	85,179	42,589	6,388	100		0.10	0.05	0.007															
OC2 - Active mining area (pit, active dumping area)	-	-			ha	0.10	0.05	0.007															
OC2 - Inactive area (no rehabilitation)	1,216	608	91	3		0.10	0.05	0.007															% Control
OC2 - Partially rehabilitated (e.g. stable and seeded)	-	-	-	-		0.10	0.05	0.007														70	% Control
OC2 - Hard Stand Areas (Workshops, roads, conveyor	17,850	8,925	1,339	21		0.10	0.05	0.007															
OC3 - Active mining area (pit, active dumping area)	110,475	55,237	8,286	130		0.10	0.05	0.007														50	
OC3 - Inactive area (no rehabilitation)	-	-	-	-		0.10	0.05	0.007															% Control
OC3 - Partially rehabilitated (e.g. stable and seeded)	44,602 31,969	22,301	3,345	175		0.10	0.05	0.007														70	% Control
OC3 - Hard Stand Areas (Workshops, roads, conveyor OC4 - Active mining area (pit, active dumping area)	31,969	15,984 64,711	2,398	38 152		0.10	0.05	0.007							-	\vdash							
OC4 - Active mining area (pit, active dumping area) OC4 - Inactive area (no rehabilitation)	129,421	8,317	9,707	39		0.10	0.05	0.007							-	\vdash						= -	% Control
OC4 - Inactive area (no renabilitation) OC4 - Partially rehabilitated (e.g. stable and seeded)	32,449	8,317	2,434	127		0.10	0.05	0.007						l	l	+							% Control % Control
OC4 - Hard Stand Areas (Workshops, roads, conveyor	29.589	14,794	2,434	35		0.10	0.05	0.007						1	-							,0	10 0011101
Stockpile - ROM coal stockpile (OC1)	3.107	1,553	2,219	7		0.10	0.05	0.007						-								50	% Control
Stockpile - ROM coal stockpile (UC1)	3,107	385	233	2		0.10	0.05	0.007						-	-								% Control
Stockpile - ROM coal stockpile (OG)	1.471	735	110	2		0.10	0.05	0.007						1	-								% Control
Stockpile - ROM coal stockpile (OC3)	3.336	1,668	250		ha	0.10	0.05	0.007							-								% Control
Stockpile - Rypass Coal Stockpile	5,143	2,571	386	12		0.10	0.05	0.007															% Control
Stockpile - Product Coal Stockpile	4,526	2,263	339	11		0.10	0.05	0.007															% Control
				230.388			0.22		kg/VK1			0.4535						1 1		1			
Grading roads	141.796	49.543	4.396			0.62					peed of grader		hours utilise										

									mvento	.,	.01 2020												
ACTIVITY	TSP emission	PM10 emission	PM25 emission	Intensity	Units	Emission Factor - TSP	Emission Factor - PM10	Emission Factor - PM25	Units	Variable 1	Units	Variable 2 U	Jnits I	Varia ble 3 - TSP	Varia ble 3 PM1 0 PM1	nria 93 - U 125	nits	Vari able 4	Units	Varia ble 5	Units	Varia ble 6	Units
Overbuden																							
OB - Stripping Topsoil - OC4	6,300	2,463	296	450	hours/year	14.0	5.5	0.7	kg/h	450	total hours/year												
OB - Drilling - OC4	8,184	4,256	246	46,240		0.59	0.31	0.02	kg/hole	0.00074	holes/bcm											70	% Control
OB - Blasting - OC4	75.010	39.005	2.250			572	297.2		kg/blast		Area of blast in m2	0.0000021 blasts/t	bcm										
OB - Excavator loading OB to haul truck - OC4	105,337	49,822	7.544	99,666,144		0.001	0.00050	0.00008	ka/t	0.893	(WS/2.2) ^{1.3} in m/s	2 MC in %	6	2.2		tonn	es/BCM	72.5	% OB excavato	r only			1
OB - Excavator rehandle - OC4	3,196	1.512	229			0.001	0.00050	0.00008		0.893	(WS/2.2) ^{1.3} in m/s	2 MC in %		2.2			es/BCM		% OB rehandle				
OB - Hauling to dump - OC4 (930 E)	137,761	34,185				0.037	0.009		kg/t		tonnes/load	2.0 km/retu		5.8	1.4	0.1 kg/V			% silt content		Avo GMV (top	90	% Control
OB - Hauling to dump - OC4 (830 E) OB - Hauling to dump - OC4 (830 E) (north)	304,955	75,674		37,374,804		0.037	0.020	0.001	kg/t		tonnes/load	3.3 km/retu		5.3	1.4	0.1 kg/V			% silt content				% Control
OB - Hauling to dump - OC4 (830 E) (north) OB - Hauling to dump - OC4 (830 E) (south)	203,303	50,449				0.082	0.020		kg/t		tonnes/load	3.3 km/retu		5.3	1.3	0.1 kg/V			% silt content				% Control
OB - Emplacing at dump - OC4 (aso E) (south)	105.337	49.822	7.544	99.666.144		0.082	0.0020	0.0002	kg/t		(WS/2.2) ^{1.3} in m/s	2 MC in %		0.0	1.3	0. I Kg/V	<1	4.2	% sin coment	219	AVE GIVIV (1011	90	% CONTO
OB - Dozers on OB (dump and pit) - OC4	1,110,055	268,251	116,556	66,330		16.7	4.0		kg/h	0.093	SC in %	2 MC in %											<u> </u>
	1,110,055	200,201	110,550	00,330	nours/year	10.7	4.0	1.0	кул	10	30 111 70	2 NIC 11 7	0										L
Coal																							L
CL - Drilling - OC4	480	250	14		holes/year	0.10	0.05		kg/hole	0.001	Holes/tonne ROM											70	% Control
CL - Blasting - OC4	39,867	20,731	1,196			859	446.8		kg/blast		Area of blast in m2	0.0000029 blasts/t											
CL - Dozers ripping/pushing/clean-up - OC4	116,727	27,536	2,568	12,823	hours/year	18.2	4.3	0.4	kg/h		SC in %	7.4 MC in %	6									50	% Control
CL - Loading ROM coal to haul truck - OC4	840,369	118,064			tonnes/year	0.053	0.007		kg/t		MC in %												
CL - Hauling ROM to hopper - OC4	278,086	69,006	6,901	16,000,000	tonnes/year	0.174	0.043	0.004	kg/t		tonnes/load	6.4 km/retu	urn trip	4.9	1.2	0.1 kg/V	(T	4.2	% silt content	234	Ave GMV (ton	90	% Control
CL - Unload to hopper or stockpile (OC4)	420,184	59,032	7,984	16,000,000	tonnes/year	0.053	0.007	0.001	kg/t	7.4	MC in %											50	% Control
CL - Rehandling - OC4 - at hopper	111,937	15,726	2,127	4,262,400	tonnes/year	0.053	0.007	0.001	kg/t	7.4	MC in %											50	% Control
CHPP - Transfer to Sizing Station (OC4)	2,708	1,281	194		tonnes/year	0.000	0.00008	0.00001	ka/t		(WS/2.2) ^{1.3} in m/s	7.4 MC in %	6										
Bypass	2,.00	.,_01		, ,					3	2.570	100.5% 2.27 III III/S												
CL - bypass - conveying to bypass stockpile (OC4) (1 transfer po	1,124	531	80	6,638,573	tonnes/year	0.000	0.00008	0.00001	ka/t	0.803	(WS/2.2) ^{1.3} in m/s	7.4 MC in %	6	-								-	1
CL - bypass - conveying to bypass stockpile (OC4) (1 transier po CL - bypass - discharge to bypass stockpile (OC4)	1,124	531	80		tonnes/year	0.000	0.00008	0.00001	kg/t	0.093	(WG/2.2) IIIII/S	7.4 MC in %								+		-	H 1
CL - bypass - discillarge to bypass stockpile (OC4)										0.893	(WS/2.2) ^{1.3} in m/s							_					t
CL - bypass - transfer station (OC)	1,124	531				0.000	0.00008			0.893	(WS/2.2) ^{1.3} in m/s	7.4 MC in %	10									I	1
CL - bypass - bypass coal sizing station						0.0027	0.00120) kg/t														
CL - bypass - OC bypass coal conveyed to product stockpile	376			0.36		0.40	0.2	0.0	kg/ha/hour	8,760												70	% Control
CL - bypass - bypass coal conveyed to TLO (3 transfer points)	3,371	1,594	241	6,638,573	tonnes/year	0.000	0.00008	0.00001	kg/t	0.893	(WS/2.2) ^{1.3} in m/s	7.4 MC in %	6										
Open Cut																							
CHPP - Transfer to Sizing Station (OC4)	1,585	749	113	9,361,427	tonnes/year	0.000	0.00008	0.00001	kg/t	0.893	(WS/2.2) ^{1.3} in m/s	7.4 MC in %	6										
CHPP - Sizing Station (OC1+OC2+OC3+OC4)	25,276	11.234	1.188	9.361.427	tonnes/year	0.0027	0.00120	0.0	kg/t														
CHPP - Conveying to CHPP (OC)	39			0.04		0.40	0.2		kg/ha/hour	8.760	hours											70	% Control
CHPP - Washing (OC)	-				tonnes/year													_					
CHPP - Conveying to CHPP Product Stockpile (OC)	208	81	10	9,301,427	ha	0.40	0.2	0.0	kg/ha/hour	8,760	hours			_								70	% Control
CHPP - Unloading to CHPP Product Stockpile (OC)	801	379			tonnes/year	0.000	0.00005					10 MC in %	,					_				70	78 CONTROL
										0.893	(WS/2.2) ^{1.3} in m/s	10 MC in %											L
CHPP - Reclaim and Conveying to TLO (3 transfer points)	4,616	2,183	331	13,855,717	tonnes/year	0.000	0.00005	0.00001	kg/t	0.893	(WS/2.2) ^{1.3} in m/s	10 MC in %	6										L
Underground																							
CHPP - Conveyor transfer point at UG portal entrance	310		15	0.30		0.40	0.2		kg/ha/hour	8,760													% Control
CHPP - Conveyor to UG1 pit top	386	151				0.40	0.2		kg/ha/hour	8,760												70	% Control
CHPP - Unload to ROM stockpile	1,354	640			tonnes/year	0.000	0.00008		kg/t	0.893	(WS/2.2) ^{1.3} in m/s	7.4 MC in %											
CHPP - Transfer to sizing station (at product coal stockpile area)	1,354	640			tonnes/year	0.000	0.00008	0.00001		0.893	(WS/2.2) ^{1.3} in m/s	7.4 MC in %											
CHPP - Unload to product stockpile	1,354	640	97	8,000,000	tonnes/year	0.000	0.00008	0.00001	kg/t	0.893	(WS/2.2) ^{1.3} in m/s	7.4 MC in %											
CHPP - Reclaim and conveyor to TLO (3 transfer points)	4,062	1,921	291	8,000,000	tonnes/year	0.000	0.00008	0.00001	kg/t	0.893	(WS/2.2) ^{1.3} in m/s	7.4 MC in %	6										
Dozers																							
CHPP - Dozer pushing ROM coal at UG1 pit top	27.063	6,384	595	2,973	hours/year	18.2	4.3	0.4	kg/h	5	SC in %	7.4 MC in %	6									50	% Control
CHPP - Dozer pushing ROM coal (bypass) at bypass stockpile	41,173	9,424			hours/year	12.3	2.8		kg/h		SC in %	10 MC in %											% Control
CHPP - Dozer pushing washed Product coal	34.312	7,345				9.4	2.0	0.2	kg/h		SC in %	10 MC in %										50	% Control
CHPP - Dozer pushing bypass (UG + OC) Product coal	59,498	12,737	1,309	12,636		9.4	2.0		kg/h		SC in %	10 MC in %		_		_		_				50	
Rejects	37,470	12,737	1,307	12,030	nours/year	7.14	2.0	0.2	култ	4	50 11 78	10 MC III X	0					_				50	78 CONTON
Rejects	100	70		0.17	ha	0.40			Lon On a Drawn	0.740	hours											70	Of Constant
CHPP - Conveying rejects from CHPP to loadout	183	72	9			0.40	0.2	0.00000	kg/ha/hour			20 MC in %										70	% Control
CHPP - Loading rejects					tonnes/year						(WS/2.2) ^{1.3} in m/s												
CHPP - Hauling rejects	68,714					0.320	0.080	0.008			tonnes/load	11.8 km/retu	urn trip	4.9	1.2	0.1 kg/V	(I	4.2	% silt content	234	Ave GMV (ton	90	% Control
CHPP - Unloading rejects	90	43	6	2,144,283	tonnes/year	0.000	0.00002	0.00000) kg/t	0.893	(WS/2.2) ^{1.3} in m/s	20 MC in %	6										
Wind Erosion																							
OC1 - Inactive area (no rehabilitation)	-	-	-	-	ha	0.10	0.05		kg/ha/hour	8,760	hours												
OC1 - Partially rehabilitated (e.g. stable and seeded)	3,118	1,559	234	12.23	ha	0.10	0.05	0.007	kg/ha/hour	8,760	hours											70	% Control
OC1 - Hard Stand Areas (Workshops, roads, conveyors etc)	94,952	47,476	7,121	111.71	ha	0.10	0.05	0.007	kg/ha/hour	8,760	hours												
OC2 - Active mining area (pit, active dumping area)	-	-	-	-	ha	0.10	0.05	0.007	kg/ha/hour	8,760	hours												
OC2 - Inactive area (no rehabilitation)	-	-		-	ha	0.10	0.05	0.007	kg/ha/hour	8,760	hours											50	% Control
OC2 - Partially rehabilitated (e.g. stable and seeded)					ha	0.10	0.05		kg/ha/hour	8,760												70	% Control
OC2 - Hard Stand Areas (Workshops, roads, conveyors etc)	17,851	8,925	1,339	21.00	ha	0.10	0.05		kg/ha/hour					_				_					
OC3 - Active mining area (pit, active dumping area)	17,051	0,723	1,337		ha	0.10	0.05		kg/ha/hour	8,760								_					
			-		ha	0.10	0.05															50	% Control
OC3 - Inactive area (no rehabilitation)	-	-	-	-					kg/ha/hour														
OC3 - Partially rehabilitated (e.g. stable and seeded)	-			-	ha	0.10	0.05		kg/ha/hour	8,760												/0	% Control
OC3 - Hard Stand Areas (Workshops, roads, conveyors etc)	-	-		-	ha	0.10	0.05		kg/ha/hour	8,760													
OC4 - Active mining area (pit, active dumping area) (OC4 north)	156,671	78,336				0.10	0.05		kg/ha/hour	8,760													
OC4 - Active mining area (pit, active dumping area) (OC4 south)	112,024	56,012	8,402	131.79		0.10	0.05		kg/ha/hour	8,760	hours			T									
OC4 - Inactive area (no rehabilitation)	-	-	-	-	ha	0.10	0.05		kg/ha/hour		hours			Т			T			L			% Control
OC4 - Partially rehabilitated (e.g. stable and seeded)	41,005	20,503	3,075	160.81	ha	0.10	0.05		kg/ha/hour	8,760	hours											70	% Control
OC4 - Hard Stand Areas (Workshops, roads, conveyors etc)	18,343	9,172	1,376	21.58	ha	0.10	0.05		kg/ha/hour	8,760	hours												
Stockpile - ROM coal stockpile (OC1)	3,105	1,553	233	7.31	ha	0.10	0.05		kg/ha/hour	8,760	hours											50	% Control
Stockpile - ROM coal stockpile (UC)	768	384				0.10	0.05		kg/ha/hour	8,760				- 1			-						% Control
Stockpile - ROM coal stockpile (OC4)	3.953	1.976			ha	0.10	0.05		kg/ha/hour		hours							_		+			% Control
	5,143	2,572		12.10		0.10	0.05				hours							_					
Stockpile - Bypass Coal Stockpile	5,143	2,572	386			0.10	0.05		kg/ha/hour	8,760								_				50	% Control % Control
Stockpile - Product Coal Stockpile					square metre				kg/ha/hour	8,760		0.4575 hz	All									50	26 Control
Grading roads	141,796	49,543	4,396	230,388	km	0.62	0.22	0.02	kg/VKT	8	speed of graders in k	k 0.6575 hours u	utilised/total	nours									↓ /
Total TSP emissions (kg/yr)	4,768,420	1,249,423	235,441	1	1				1	1		1 1											L/

Table C-4: Emission inventory – Year 2026

Appendix D

Modelling Predictions

					D-1: Mode	lling prediction	s for 2019			
		/1 _{2.5}		M ₁₀	TSP	DD	PM _{2.5}	PM ₁₀	TSP	DD
		/m³) Moolart		/m³) Compley	(µg/m³) (incorporat	(g/m²/mth)	(μg/m³)	(μg/m³) Tota	(μg/m³) al impact	(g/m²/mth)
		Wioolark		Aodificat		ing the		1012	impact	
Receptor ID	24-	Ann.	24-	Ann.	Ann.	Ann. ave.	Ann.	Ann.	Ann.	Ann. ave.
	hr	ave.	hr	ave.	ave.		ave.	ave.	ave.	
	ave.		ave.		Δ:.					
	25		50		All	quality impact	8	25	90	4
					Privately-	owned recepto	-			-
9	5	2	26	10	21	0.42	6.8	19	39	1
26	6	2	27	9	17	0.37	6.3	18	36	1
37	3	1	14	4	9	0.17	5.5	11	24	1
39	3	1	11	2	4	0.08	4.9	8	19	1
40	3	1	18	4	8	0.16	5.4	10	23	1
60	4	1	14	5	10	0.22	5.7	12	26	1
61	3	1	13	5	10	0.22	5.7	12	26	1
66	4	1	20	7	14	0.28	6.3	18	35	1
70	4	1	16	6	13	0.24	6.1	14	30	1
75	4	1	19	5	12	0.24	5.9	13	28	1
79	3	1	15	5	10	0.22	5.7	12	27	1
80	3	1	13	4	8	0.18	5.5	11	25	1
82	3	1	13	5	9	0.21	5.6	12	25	1
83	3	1	13	4	8	0.17	5.5	11	24	1
84	3	1	13	4	8	0.17	5.5	11	24	1
86	3	1	13	4	7	0.14	5.3	10	22	1
87	3	1	13	4	8	0.16	5.4	11	23	1
88	3	1	13	4	8	0.16	5.5	11	23	1
89	3	1	12	4	7	0.14	5.3	10	22	1
90	3	1	12	3	7	0.14	5.3	10	22	1
91	3	1	13	4	8	0.16	5.4	11	23	1
94	3	1	11	3	5	0.13	5.1	9	20	1
95	3	1	12	3	6	0.13	5.2	9	21	1
96	3	1	12	3	6	0.13	5.2	10	21	1
97	3	1	12	3	6	0.14	5.2	10	21	1
98	3	1	13	3	6	0.14	5.2	10	21	1
99	3	1	14	4	7	0.14	5.3	10	22	1
100	3	1	15	4	8	0.16	5.4	10	23	1
101	3	1	14	3	6	0.13	5.2	10	21	1
102	3	1	12	3	6	0.12	5.1	9	20	1
103	3	1	12	3	5	0.12	5.1	9	20	1
104	2	1	9	3	5	0.11	5.0	9	19	1
105	2	1	10	2	5	0.11	5.0	9	19	1
106	3	1	10	3	5	0.10	5.0	9	19	1
107	3	1	10	3	5	0.11	5.1	9	20	1
109	2	1	10	2	4	0.08	4.9	8	18	1
110	2	0	11	2	4	0.08	4.9	8	18	1
111	2	1	10	2	4	0.09	4.9	8	19	1
112	2	1	10	2	4	0.09	4.9	8	18	1
113	2	1	10	2	4	0.09	4.9	8	19	1
119	3	1	16	4	7	0.14	5.3	10	22	1
149	4	1	19	7	14	0.29	6.3	19	36	1
160	4	1	20	7	14	0.28	6.3	18	35	1

Table D-1: Modelling predictions for 2019

	PN	Л _{2.5}	PI	M ₁₀	TSP	DD	PM _{2.5}	PM ₁₀	TSP	DD
		/m³)		/m³)	(µg/m³)	(g/m²/mth)	(µg/m³)	(µg/m³)	(µg/m³)	(g/m²/mth)
		Moolark		Complex Modificat	k incorporat	ting the		Tota	l impact	
Receptor ID	24- hr	Ann. ave.	24- hr	Ann. ave.	Ann. ave.	Ann. ave.	Ann. ave.	Ann. ave.	Ann. ave.	Ann. ave.
	ave.		ave.		Δir	r quality impact	criteria			
	25	-	50	-	-	2	8	25	90	4
162	4	1	20	7	14	0.28	6.3	19	36	1
168	4	1	20	7	14	0.29	6.3	18	35	1
171	2	0	7	1	2	0.05	4.6	7	16	1
180	4	1	17	4	9	0.22	5.7	12	26	1
181	4	1	16	4	9	0.22	5.6	12	26	1
182	4	1	16	4	9	0.21	5.6	12	25	1
183	3	1	15	4	8	0.22	5.5	11	25	1
186	3	1	13	4	7	0.20	5.4	11	23	1
187	3	1	12	3	7	0.18	5.4	11	23	1
188	3	1	11	3	6	0.18	5.3	10	22	1
189	3	1	11	3	7	0.17	5.3	10	22	1
190	3	1	10	3	6	0.16	5.2	10	21	1
191	3	1	10	3	6	0.15	5.2	10	21	1
192	3	1	10	3	6	0.15	5.2	10	21	1
194	2	1	9	3	5	0.14	5.1	9	20	1
195	3	1	10	3	5	0.13	5.1	9	21	1
196	2	1	9	2	5	0.13	5.0	9	20	1
200	2	1	9	2	4	0.12	5.0	9	19	1
202	2	1	9	2	4	0.12	5.0	9	19	1
203	2	1	10	2	5	0.12	5.0	9	19	1
204	2	1	10	2	5	0.12	5.0	9	19	1
206	2	1	9	2	4	0.10	4.9	8	19	1
207	2	0	8	2	3	0.08	4.8	8	17	1
208	2	0	8	2	3	0.08	4.8	8	17	1
200	2	0	8	1	2	0.00	4.7	7	17	1
210	2	0	8	1	2	0.06	4.7	7	17	1
217	2	0	9	2	3	0.07	4.8	8	17	1
218	2	0	8	1	3	0.06	4.7	7	17	1
219	2	0	8	2	3	0.08	4.8	8	18	1
219	2	0	8	2	3	0.03	4.8	8	17	1
220	2	0	9	2	4	0.09	4.9	8	18	1
223	2	1	10	2	4	0.09	4.9	8	18	1
223	3	1	10	3	6	0.10	5.1	9	20	1
224	3	1	10	3	6	0.13	5.1	9	20	1
220	3	1	10	3	6	0.13	5.2	10	21	1
229	3	1	10	3	6	0.13	5.2	10	21	1
230	3	1	10	3	6	0.14	5.2	10	21	1
230	3	1	11	3	6	0.14	5.3	10	22	1
231	3	1	10	3	6	0.14	5.3	10	22	1
232	3	1	10	3	7	0.14	5.3	10	22	1
233	3	1	11	3	7	0.15	5.3	10	22	1
234	3	1	11	3	7	0.15	5.3	10	22	1
235	3	1	11	4	7	0.16	5.4	10	23	1
230	3	1	11	4	8	0.18	5.4	11	23	1
238	3	1	13	4	8	0.18	5.5	11	24	1

	PN	/I 2.5	PI	И ₁₀	TSP	DD	PM _{2.5}	PM ₁₀	TSP	DD
		/m³)		/m³)	(µg/m³)	(g/m²/mth)	(µg/m³)	(µg/m³)	(µg/m³)	(g/m²/mth)
		Moolark		Complex /lodificat	c incorporat ion	ting the		Tota	l impact	
Receptor ID	24- hr ave.	Ann. ave.	24- hr ave.	Ann. ave.	Ann. ave.	Ann. ave.	Ann. ave.	Ann. ave.	Ann. ave.	Ann. ave.
	avc.		avc.		Air	· quality impact	criteria		<u> </u>	
	25	-	50	-	-	2	8	25	90	4
255	3	1	13	3	6	0.14	5.3	12	24	1
256	3	1	13	3	6	0.14	5.3	12	24	1
258	3	1	15	4	7	0.16	5.4	12	25	1
300	4	1	15	5	11	0.27	5.8	13	28	1
303	3	1	14	5	10	0.24	5.8	13	27	1
305	3	1	14	4	9	0.23	5.6	12	26	1
306	3	1	14	4	9	0.22	5.6	12	26	1
307	3	1	14	4	8	0.22	5.6	12	25	1
308	3	1	13	4	8	0.23	5.5	11	24	1
309	3	1	12	4	7	0.25	5.4	11	24	1
310	3	1	12	4	8	0.25	5.5	11	25	1
312	3	1	12	4	8	0.27	5.5	11	25	1
313	3	1	12	4	7	0.27	5.4	11	24	1
314	3	1	12	4	8	0.29	5.5	11	25	1
315	3	1	12	4	8	0.30	5.5	12	25	1
316	3	1	12	4	8	0.31	5.6	12	25	1
317	3	1	13	5	10	0.32	5.7	12	26	1
11 (a)	1	0	6	0	1	0.01	4.7	8	18	1
11 (b)	1	0	6	0	1	0.01	4.7	8	17	1
11 (c)	1	0	7	0	1	0.01	4.7	8	18	1
184 (a)	3	1	14	4	8	0.20	5.5	11	25	1
184 (b)	3	1	14	4	8	0.20	5.5	11	24	1
201 (a)	2	1	9	2	4	0.12	5.0	9	19	1
201 (b)	2	1	9	2	5	0.12	5.0	9	19	1
41 (a)	3	1	12	3	6	0.11	5.1	9	20	1
41 (b)	3	1	10	3	6	0.13	5.2	10	21	1
46B	5	1	21	8	16	0.32	6.7	21	40	1
100		-		U		wned receptors			10	-
5	10	4	44	17	38	0.75	9	27	58	1
20	7	3	30	12	26	0.49	7	21	45	1
21	6	2	24	10	21	0.42	7	18	40	1
22	6	2	23	8	18	0.35	7	17	37	1
23	6	2	25	8	17	0.31	7	16	35	1
25	6	2	29	10	20	0.46	7	20	39	1
28	7	2	33	8	17	0.33	6	15	32	1
30	6	2	32	8	17	0.30	6	14	32	1
30	8	2	35	10	19	0.36	7	16	35	1
32	2	0	8	1	1	0.03	5	7	16	1
35	4	1	18	3	6	0.12	5	10	21	1
36	20	- 7	103	30	74	1.39	12	37	89	2
41	6	2	24	8	16	0.31	6	16	34	1
47	4	0	15	2	3	0.05	5	8	17	1
48	1	0	4	0	1	0.03	4	6	15	1
48	6	2	26	9	18	0.39	6	18	36	1
51	4	0	15	2	3	0.05	5	8	17	1
71	4	U	1.7	4	J	0.05	5	U	1/	1

	PN	A _{2.5}	PI	M ₁₀	TSP	DD	PM _{2.5}	PM ₁₀	TSP	DD
		/m³)		/m³)	(µg/m³)	(g/m²/mth)	(µg/m³)	(µg/m³)	(µg/m³)	(g/m²/mth)
		Moolarb			<pre>c incorporat</pre>	ing the		Tota	l impact	
Receptor	24	•		/lodificat		•				• • • • • • •
ID	24- hr	Ann. ave.	24- hr	Ann. ave.	Ann. ave.	Ann. ave.	Ann. ave.	Ann. ave.	Ann. ave.	Ann. ave.
	ave.	ave.	ave.	ave.	ave.		ave.	ave.	ave.	
		<u>I</u>		1	Air	quality impact	criteria	<u> </u>		<u> </u>
	25	-	50	-	-	2	8	25	90	4
52	1	0	5	0	0	0.01	4	6	15	1
58	6	2	24	8	17	0.35	6	16	34	1
59	4	2	17	7	15	0.32	6	14	32	1
63	5	2	21	7	14	0.26	6	15	32	1
64	5	1	19	6	13	0.25	6	14	31	1
69	1	0	6	0	1	0.01	4	7	15	1
74	4	1	19	6	12	0.24	6	13	29	1
76	4	1	17	5	11	0.23	6	13	27	1
77	4	1	17	6	12	0.27	6	13	29	1
78	3	1	14	5	9	0.20	6	12	26	1
81	3	1	13	5	10	0.22	6	12	26	1
152	4	1	20	7	13	0.26	6	18	35	1
153	4	1	20	7	13	0.26	6	18	35	1
157	4	1	20	7	14	0.27	6	18	35	1
158	4	1	19	7	13	0.24	6	17	33	1
159	4	1	20	7	14	0.27	6	18	35	1
161	4	1	20	7	14	0.28	6	18	35	1
165	4	1	20	7	14	0.28	6	19	36	1
169	4	1	20	6	12	0.25	6	15	30	1
170	4	1	15	5	11	0.26	6	13	29	1
172	4	1	16	6	12	0.24	6	14	30	1
173	4	1	18	6	13	0.29	6	15	31	1
175	4	1	14	5	11	0.24	6	13	28	1
176	3	1	15	5	11	0.23	6	13	28	1
177	4	1	16	5	10	0.22	6	13	28	1
239	3	1	14	4	9	0.19	6	11	25	1
240	4	1	16	5	10	0.21	6	12	26	1
241	4	1	17	5	10	0.21	6	12	27	1
253	2	0	10	1	2	0.05	5	12	23	1
254	2	0	12	2	4	0.10	5	11	23	1
257	3	1	15	4	7	0.16	5	12	25	1
301	4	1	15	5	10	0.26	6	13	28	1
302	4	1	14	5	10	0.25	6	13	27	1
319	1	0	5	1	1	0.04	5	7	16	1
319	1	0	4	1	1	0.04	5	7	16	1
319	1	0	2	0	1	0.03	5	7	16	1
319	1	0	2	0	1	0.02	5	7	16	1
319	1	0	2	0	0	0.02	5	7	15	1
319	1	0	2	0	0	0.02	5	10	20	1
320	3	1	13	4	8	0.17	5	10	25	1
41C	4	1	20	7	14	0.27	6	18	35	1
29c	6	1	23	4	8	0.14	5	10	23	1

PIV (µg/ 24- hr ave. 25 9 9 3 2 3	′m³)	(µg, en Coal	M ₁₀ /m ³) Compley Aodificat Ann. ave.	Ann. ave.	DD (g/m²/mth) ting the Ann. ave.	PM _{2.5} (μg/m³) Ann. ave.	Ann.	TSP (μg/m³) Il impact Ann.	DD (g/m²/mth) Ann. ave.
24- hr ave. 25 9 9 3 2	Moolarb Ann. ave. - 3 2	en Coal N 24- hr ave. 50	Complex Aodificat Ann.	c incorporat ion Ann. ave.	ting the	Ann.	Tota Ann.	l impact Ann.	
24- hr ave. 25 9 9 3 2	Ann. ave. - 3 2	N 24- hr ave. 50	/lodificat Ann.	ion Ann. ave.	-		Ann.	Ann.	Ann. ave.
hr ave. 25 9 9 3 2	ave. - 3 2	24- hr ave. 50	Ann.	Ann. ave.	Ann. ave.				Ann. ave.
ave. 25 9 9 3 2	- 3 2	ave. 50	ave.			ave.			
25 9 9 3 2	2	50	-	Air			ave.	ave.	
9 9 3 2	2		-	Air					
9 9 3 2	2		-		quality impact		25	00	
9 3 2	2	40		- Privately-	2 owned recepto	8	25	90	4
3 2			13	27	0.50	7.6	21	45	1
2	1	40	10	18	0.31	6.7	18	36	1
		15	4	6	0.11	5.2	10	21	1
3	1	11	3	4	0.08	4.9	9	19	1
	1	18	4	7	0.12	5.3	10	22	1
3	1		3			5.3	10		1
	1							21	1
5	1	20	7	14	0.26	6.2	17	33	1
4	1		4	7		5.6	12	24	1
4	1	14							1
3	1	11	3	5		5.2	10	21	1
									1
									1
									1
									1
									1
									1
									1
									1
									1
									1
									1
									1
									1
									1
			-				-		1
									1
									1
									1
									1
									1
									1
		13	3	4				19	1
									1
								20	1
									1
									1
				4		4.9		19	1
									1
									1
									1
									1
									1
	4 4	3 1 5 1 4 1 3 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	3 1 10 5 1 20 4 1 16 4 1 14 3 1 11 3 1 10 3 1 10 3 1 10 2 1 11 2 1 11 2 1 12 3 1 13 3 1 14 3 1 12 3 1 14 3 1 12 3 1 12 3 1 14 2 1 12 3 1 14 3 1 14 3 1 14 3 1 14 3 1 13 2 1 13 2 1 13 2 1<	3 1 10 3 5 1 20 7 4 1 16 4 4 1 14 3 3 1 10 3 3 1 10 3 3 1 10 3 3 1 10 3 2 1 11 3 3 1 10 3 2 1 11 3 3 1 13 3 3 1 13 3 3 1 14 3 3 1 14 3 3 1 14 3 3 1 14 3 3 1 13 3 3 1 14 4 3 1 14 3 3 1 14 3 3	3 1 10 3 5 5 1 20 7 14 4 1 16 4 7 4 1 14 3 5 3 1 11 3 5 3 1 10 3 4 3 1 10 3 5 2 1 11 3 5 2 1 12 3 5 3 1 13 3 5 3 1 13 3 5 3 1 14 3 5 3 1 14 3 6 2 1 12 3 5 3 1 14 3 5 3 1 14 3 5 3 1 14 3 5 3 1 14 3	3 1 10 3 5 0.08 5 1 20 7 14 0.26 4 1 16 4 7 0.13 4 1 14 3 5 0.08 3 1 11 3 5 0.08 3 1 10 3 4 0.07 3 1 10 3 5 0.08 2 1 11 3 5 0.08 2 1 12 3 5 0.08 3 1 13 3 5 0.08 3 1 13 3 5 0.09 3 1 14 3 6 0.10 2 1 12 3 5 0.09 3 1 13 3 5 0.09 3 1 13 3 5 0.10 <td>3110350.085.251207140.266.24116470.135.64114350.085.33111350.085.23110340.075.13110350.085.22111350.085.12112350.085.13113350.085.13113350.085.13113350.085.13113350.085.13113350.095.23114360.105.23114360.105.24111340.095.05112350.095.13113350.105.13113350.105.13113350.105.13114460.115.23113350.105.13114350.105.1<!--</td--><td>3110350.085.21051207140.266.2174116470.135.6124114350.085.3113111350.085.2103110340.075.1103110350.085.2102111350.085.1102112350.085.1103113350.085.1103113350.085.1103113350.085.1103114350.095.2103114350.095.193114350.095.092111340.095.093114350.105.193114350.105.193114350.105.193114350.105.193114460.115.21031</td><td>3 1 10 3 5 0.08 5.2 10 21 5 1 20 7 14 0.26 6.2 17 33 4 1 16 4 7 0.13 5.6 12 24 4 1 14 3 5 0.08 5.3 11 22 3 1 10 3 5 0.08 5.2 10 21 3 1 10 3 5 0.08 5.1 10 20 3 1 12 3 5 0.08 5.1 10 20 3 1 13 3 5 0.08 5.1 10 20 3 1 13 3 5 0.08 5.1 9 20 3 1 13 3 5 0.09 5.1 9 20 3 1 12</td></td>	3110350.085.251207140.266.24116470.135.64114350.085.33111350.085.23110340.075.13110350.085.22111350.085.12112350.085.13113350.085.13113350.085.13113350.085.13113350.085.13113350.095.23114360.105.23114360.105.24111340.095.05112350.095.13113350.105.13113350.105.13113350.105.13114460.115.23113350.105.13114350.105.1 </td <td>3110350.085.21051207140.266.2174116470.135.6124114350.085.3113111350.085.2103110340.075.1103110350.085.2102111350.085.1102112350.085.1103113350.085.1103113350.085.1103113350.085.1103114350.095.2103114350.095.193114350.095.092111340.095.093114350.105.193114350.105.193114350.105.193114350.105.193114460.115.21031</td> <td>3 1 10 3 5 0.08 5.2 10 21 5 1 20 7 14 0.26 6.2 17 33 4 1 16 4 7 0.13 5.6 12 24 4 1 14 3 5 0.08 5.3 11 22 3 1 10 3 5 0.08 5.2 10 21 3 1 10 3 5 0.08 5.1 10 20 3 1 12 3 5 0.08 5.1 10 20 3 1 13 3 5 0.08 5.1 10 20 3 1 13 3 5 0.08 5.1 9 20 3 1 13 3 5 0.09 5.1 9 20 3 1 12</td>	3110350.085.21051207140.266.2174116470.135.6124114350.085.3113111350.085.2103110340.075.1103110350.085.2102111350.085.1102112350.085.1103113350.085.1103113350.085.1103113350.085.1103114350.095.2103114350.095.193114350.095.092111340.095.093114350.105.193114350.105.193114350.105.193114350.105.193114460.115.21031	3 1 10 3 5 0.08 5.2 10 21 5 1 20 7 14 0.26 6.2 17 33 4 1 16 4 7 0.13 5.6 12 24 4 1 14 3 5 0.08 5.3 11 22 3 1 10 3 5 0.08 5.2 10 21 3 1 10 3 5 0.08 5.1 10 20 3 1 12 3 5 0.08 5.1 10 20 3 1 13 3 5 0.08 5.1 10 20 3 1 13 3 5 0.08 5.1 9 20 3 1 13 3 5 0.09 5.1 9 20 3 1 12

Table D-2: Modelling predictions for 2021

	PN	A _{2.5}	PI	И ₁₀	TSP	DD	PM _{2.5}	PM ₁₀	TSP	DD
		/m³)	(µg,	/m³)	(µg/m³)	(g/m²/mth)	(µg/m³)	(µg/m³)	(µg/m³)	(g/m²/mth)
		Moolart		Complex /Iodificat	c incorporat	ing the		Tota	l impact	
Receptor	24-	Ann.	24-	Ann.	Ann.	Ann. ave.	Ann.	Ann.	Ann.	Ann. ave.
ID	hr	ave.	hr	ave.	ave.		ave.	ave.	ave.	
	ave.		ave.							
	25		50			quality impact	1	25	00	4
162	25 5	- 1	20	- 8	- 14	2 0.27	8 6.3	25 17	90 34	4 1
162	5	1	20	7	14	0.27	6.2	17	33	1
171	1	0	6	1	2	0.05	4.6	7	16	1
180	3	1	13	3	5	0.09	5.2	10	21	1
180	3	1	13	3	4	0.09	5.2	10	21	1
182	3	1	12	3	4	0.09	5.2	10	21	1
183	3	1	12	2	4	0.09	5.1	10	20	1
186	3	1	10	2	4	0.08	5.0	9	20	1
180	3	1	10	2	4	0.00	5.0	9	19	1
188	2	0	9	2	3	0.07	5.0	9	19	1
189	2	1	9	2	4	0.07	5.0	9	19	1
100	2	0	8	2	3	0.07	5.0	9	19	1
191	2	0	8	2	3	0.07	5.0	9	19	1
192	2	0	8	2	4	0.07	5.0	9	19	1
194	2	0	8	2	3	0.08	4.9	9	18	1
195	2	1	9	2	4	0.08	5.0	9	19	1
196	2	0	8	2	3	0.08	4.9	9	18	1
200	2	0	8	2	3	0.08	4.9	9	18	1
202	2	0	9	2	4	0.09	4.9	9	18	1
203	2	1	10	2	4	0.09	4.9	9	19	1
204	2	1	11	2	4	0.09	4.9	9	19	1
206	2	0	10	2	4	0.09	4.9	8	18	1
207	1	0	8	2	3	0.08	4.8	8	17	1
208	1	0	6	2	3	0.07	4.7	8	17	1
209	1	0	6	2	3	0.07	4.7	8	17	1
210	1	0	6	1	2	0.06	4.7	7	17	1
217	2	0	8	2	3	0.07	4.8	8	17	1
218	1	0	7	2	3	0.06	4.7	8	17	1
219	2	0	8	2	3	0.08	4.8	8	18	1
220	1	0	6	2	3	0.07	4.7	8	17	1
222	2	0	10	2	4	0.09	4.9	8	18	1
223	2	1	12	2	4	0.09	4.9	9	19	1
224	2	1	10	3	4	0.09	5.0	9	19	1
226	2	1	10	3	4	0.09	5.0	9	19	1
227	2	1	10	3	4	0.08	5.0	9	19	1
229	2	1	11	3	4	0.08	5.0	9	19	1
230	2	1	11	3	4	0.08	5.0	9	20	1
231	2	1	11	3	4	0.08	5.0	9	19	1
232	2	1	10	3	4	0.08	5.0	9	19	1
233	2	1	10	3	4	0.07	5.0	9	19	1
234	2	1	10	3	4	0.07	5.0	9	19	1
235	2	1	9	2	4	0.07	5.0	9	19	1
236	2	1	9	3	4	0.07	5.1	9	20	1
237	3	1	10	3	4	0.07	5.1	10	20	1
238	3	1	10	3	4	0.07	5.1	10	20	1

	PN	A _{2.5}	PI	И ₁₀	TSP	DD	PM _{2.5}	PM ₁₀	TSP	DD
		/m³)	(µg,	/m³)	(µg/m³)	(g/m²/mth)	(µg/m³)	(µg/m³)	(µg/m³)	(g/m²/mth)
		Moolart		Complex Aodificat	c incorporat	ting the		Tota	l impact	
Receptor	24-	Ann.	24-	Ann.	Ann.	Ann. ave.	Ann.	Ann.	Ann.	Ann. ave.
ID	hr	ave.	hr	ave.	ave.		ave.	ave.	ave.	
	ave.		ave.							
						quality impact				
255	25 3	- 1	50 15	- 3	- 6	2 0.12	8 5.2	25 11	90 22	4 1
255	3	1	15	3	6	0.12	5.2	11	22	1
258	4	1	14	- 5 - 4	7	0.15	5.5	11	23	1
300	4	1	10	4	8	0.13	5.6	12	24	1
303	4	1	13	4	6	0.19	5.4	12	24	1
305	3	1	14	3	5	0.14	5.3	11	23	1
305	3	1	14	3	5	0.12	5.2	11	22	1
					4					
307	3	1	13	3		0.11	5.2	10	21	1
308	3	1	12	3	4	0.11	5.2	10	21	1
309	3	1	12	3	5	0.14	5.2	10	21	1
310	3	1	12	3	5	0.16	5.3	10	22	1
312	3	1	12	3	6	0.19	5.3	11	22	1
313	3	1	12	3	5	0.18	5.3	10	22	1
314	3	1	12	3	6	0.21	5.3	11	22	1
315	3	1	13	4	6	0.23	5.4	11	23	1
316	3	1	14	4	7	0.24	5.4	11	23	1
317	4	1	15	4	8	0.25	5.5	12	24	1
11 (a)	2	0	7	0	1	0.01	4.6	7	17	1
11 (b)	1	0	6	0	1	0.01	4.6	7	16	1
11 (c)	1	0	7	1	1	0.01	4.6	7	17	1
184 (a)	3	1	11	3	4	0.08	5.1	10	20	1
184 (b)	3	1	11	2	4	0.08	5.1	10	20	1
201 (a)	2	0	8	2	3	0.09	4.9	8	18	1
201 (b)	2	0	9	2	4	0.09	4.9	9	18	1
41 (a)	3	1	17	3	6	0.10	5.1	9	20	1
41 (b)	2	1	10	3	4	0.08	5.0	9	19	1
46B	7	1	28	8	16	0.31	6.5	19	37	1
		-				wned receptors				-
5	13	4	54	18	34	0.63	8	27	53	1
20	8	3	32	12	23	0.40	7	20	41	1
21	6	2	26	9	18	0.33	7	18	36	1
22	6	2	23	8	14	0.26	6	16	32	1
23	5	1	19	6	12	0.21	6	14	29	1
25	9	3	38	12	23	0.39	7	21	41	1
28	8	2	36	10	19	0.29	7	17	34	1
30	6	2	28	8	14	0.20	6	14	29	1
31	10	3	49	14	26	0.41	7	21	41	1
32	3	0	11	1	2	0.03	5	7	16	1
35	3	1	17	4	7	0.11	5	10	22	1
36	14	5	74	24	44	0.67	9	31	60	1
41	5	1	19	6	11	0.21	6	14	29	1
47	3	1	13	2	4	0.07	5	9	19	1
48	1	0	5	0	1	0.02	4	6	15	1
49	9	2	40	10	19	0.33	7	18	36	1
51	4	1	19	2	4	0.07	5	9	18	1

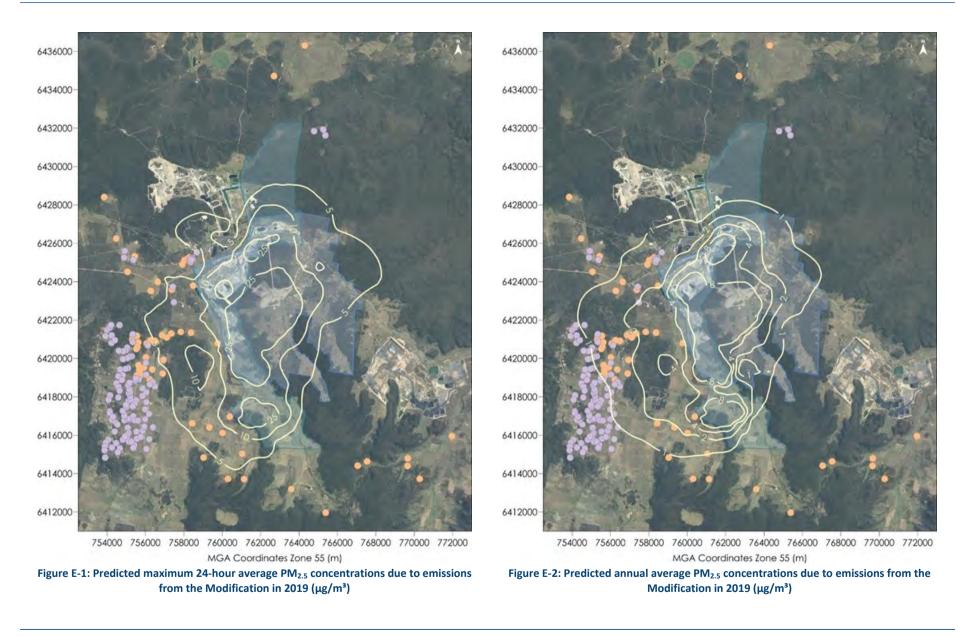
D-7

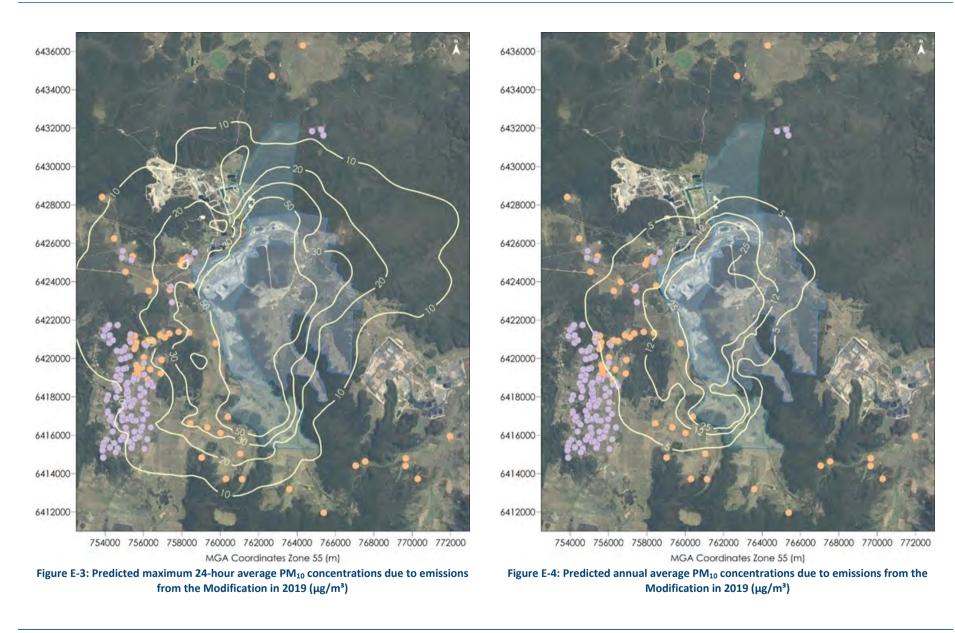
	PN	Л _{2.5}	PI	M ₁₀	TSP	DD	PM _{2.5}	PM ₁₀	TSP	DD
		/m³)		/m³)	(µg/m³)	(g/m²/mth)	(µg/m³)	(µg/m³)	(µg/m³)	(g/m²/mth)
					k incorporat	ting the			l impact	
Receptor		-		/Iodificat		-		-	-	-
ID	24- hr	Ann.	24- hr	Ann.	Ann.	Ann. ave.	Ann.	Ann.	Ann.	Ann. ave.
	ave.	ave.	ave.	ave.	ave.		ave.	ave.	ave.	
		<u> </u>	arei	I	Aiı	quality impact	criteria	<u> </u>		1
	25	-	50	-	-	2	8	25	90	4
52	1	0	5	0	0	0.00	4	6	14	1
58	4	1	17	4	7	0.11	6	12	23	1
59	3	1	13	4	6	0.09	5	11	22	1
63	4	1	17	5	9	0.15	6	13	26	1
64	4	1	17	5	8	0.15	6	13	25	1
69	1	0	7	0	0	0.00	4	6	15	1
74	4	1	14	3	5	0.09	5	11	22	1
76	3	1	13	3	5	0.08	5	10	21	1
77	3	1	13	3	5	0.09	5	11	22	1
78	3	1	11	3	4	0.08	5	10	21	1
81	3	1	11	3	5	0.08	5	10	21	1
152	5	1	21	7	14	0.24	6	17	33	1
153	5	1	20	7	14	0.24	6	17	33	1
157	5	1	20	7	14	0.25	6	17	33	1
158	5	1	21	7	13	0.23	6	16	32	1
159	5	1	20	7	14	0.26	6	17	33	1
161	5	1	20	7	14	0.26	6	17	33	1
165	5	1	21	8	15	0.27	6	17	34	1
169	6	1	26	7	12	0.21	6	14	29	1
170	4	1	15	4	8	0.18	6	12	25	1
172	4	1	16	4	7	0.13	6	12	24	1
173	6	1	26	7	13	0.24	6	15	30	1
175	4	1	15	4	7	0.14	5	12	23	1
176	4	1	15	4	6	0.12	5	11	23	1
177	4	1	15	3	6	0.11	5	11	22	1
239	3	1	11	3	4	0.07	5	10	20	1
240	3	1	12	3	4	0.08	5	10	21	1
241	3	1	13	3	5	0.08	5	10	21	1
253	3	0	10	1	2	0.04	5	10	20	1
254	3	0	13	2	4	0.09	5	10	21	1
257	4	1	17	4	7	0.15	5	12	24	1
301	3	1	14	4	7	0.18	6	12	24	1
302	3	1	14	4	7	0.16	5	11	23	1
319	1	0	5	1	1	0.03	5	7	16	1
319	1	0	4	1	1	0.03	5	7	16	1
319	1	0	3	0	1	0.02	5	7	16	1
319	1	0	3	0	1	0.02	5	7	16	1
319	1	0	2	0	0	0.01	5	7	15	1
319	1	0	2	0	0	0.01	5	10	21	1
320	4	1	16	4	8	0.15	5	12	24	1
41C	5	1	20	7	14	0.26	6	17	33	1
29c	8	2	38	9	16	0.27	6	15	31	1

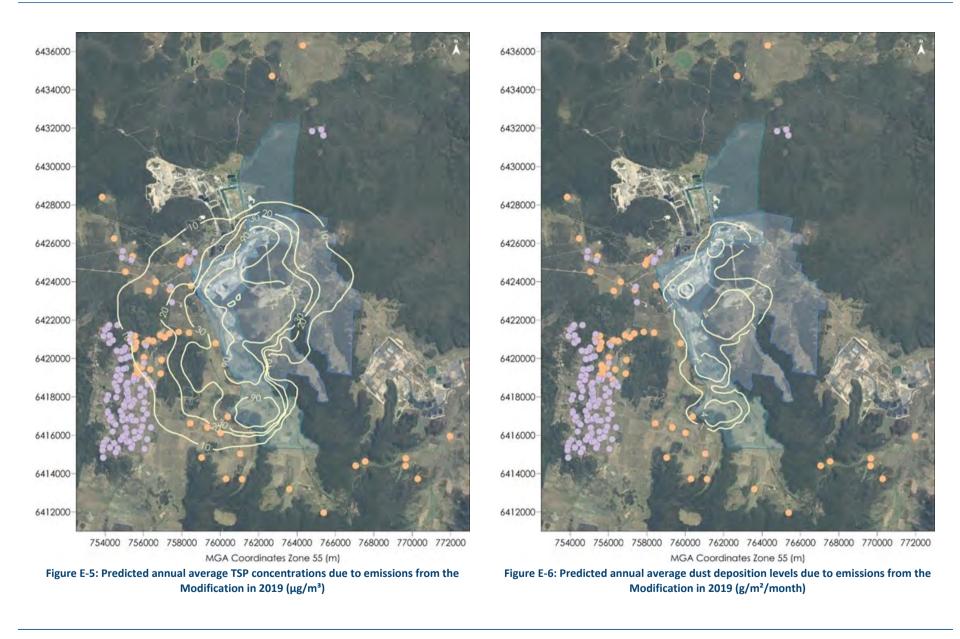
				Table	D-3: Mode	lling prediction	s for 2026			
		A _{2.5}		И ₁₀	TSP	DD	PM _{2.5}	PM ₁₀	TSP	DD
		/m³) Nacalark		/m³) Comular	(µg/m³)	(g/m²/mth)	(µg/m³)	(µg/m³)	(µg/m³)	(g/m²/mth)
		woolard		Complex /lodificat	c incorporat	ting the		lota	l impact	
Receptor	24-	Ann.	24-	Ann.	Ann.	Ann. ave.	Ann.	Ann.	Ann.	Ann. ave.
ID	hr	ave.	hr	ave.	ave.		ave.	ave.	ave.	
	ave.		ave.							
			50		Aiı	quality impact	1	25	00	
	25	-	50	-	- Privately.	2 owned recepto	8	25	90	4
9	7	2	33	7	14	0.28	6	15	30	1
26	5	1	25	7	12	0.23	6	14	29	1
37	2	0	9	1	1	0.03	5	7	16	1
39	1	0	6	1	1	0.02	5	7	15	1
40	2	0	8	1	1	0.02	5	7	16	1
60	2	0	9	1	2	0.05	5	8	18	1
61	2	0	9	1	2	0.05	5	8	18	1
66	6	1	27	6	10	0.17	6	15	28	1
70	3	1	14	3	6	0.12	5	10	22	1
75	2	0	10	2	4	0.08	5	9	20	1
79	2	0	9	2	3	0.06	5	8	18	1
80	2	0	9	1	2	0.05	5	8	18	1
82	2	0	9	1	2	0.05	5	8	18	1
83	2	0	9	1	2	0.04	5	8	17	1
84	2	0	9	1	2	0.04	5	8	17	1
86	2	0	9	1	1	0.03	5	7	16	1
87	2	0	9	1	2	0.04	5	8	17	1
88	2	0	9	1	2	0.03	5	7	17	1
89	2	0	9	1	1	0.03	5	7	16	1
90	2	0	8	1	1	0.03	5	7	16	1
91	2	0	9	1	1	0.03	5	7	16	1
94	2	0	8	1	1	0.02	5	7	16	1
95	2	0	8	1	1	0.02	5	7	16	1
96	2	0	8	1	1	0.02	5	7	16	1
97	2	0	8	1	1	0.03	5	7	16	1
98	2	0	8	1	1	0.02	5	7	16	1
99	2	0	8	1	1	0.02	5	7	16	1
100	2	0	8	1	1	0.03	5	7	16	1
101	2	0	7	1	1	0.02	5	7	16	1
102	2	0	7	1	1	0.02	5	7	16	1
103	2	0	7	1	1	0.02	5	7	16	1
104	2	0	7	1	1	0.02	5	7	15	1
105	2	0	7	1	1	0.02	5	7	15	1
106	2	0	7	1	1	0.02	5	7	15	1
107	2	0	7	1	1	0.02	5	7	16	1
109	2	0	7	0	1	0.02	5	7	15	1
110	1	0	6	0	1	0.02	5	7	15	1
111	2	0	7	1	1	0.02	5	7	15	1
112	2	0	7	1	1	0.02	5	7	15	1
113	2	0	7	1	1	0.02	5	7	15	1
119	2	0	8	1	1	0.02	5	7	16	1
149	6	1	28	6	10	0.18	6	15	29	1
160	6	1	27	6	10	0.18	6	15	29	1

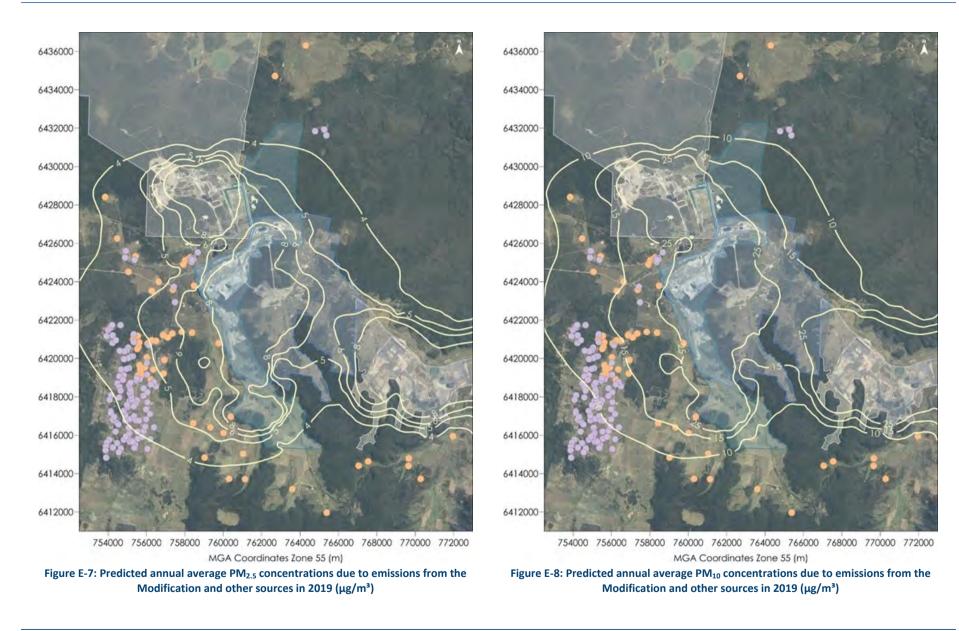
Table D-3: Modelling predictions for 2026

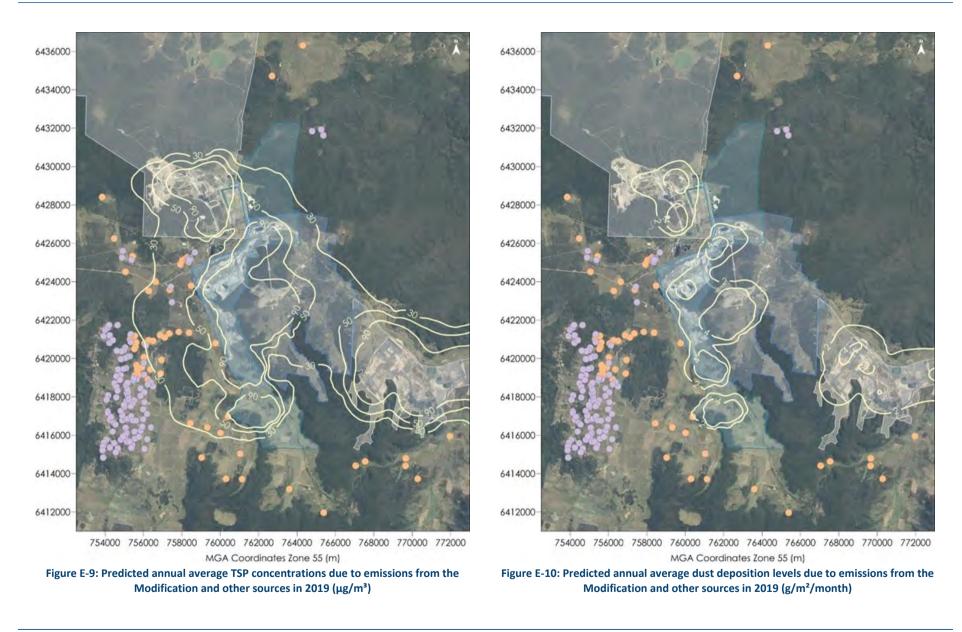
	PN	A _{2.5}	PI	И ₁₀	TSP	DD	PM _{2.5}	PM ₁₀	TSP	DD
		/m³)		/m³)	(µg/m³)	(g/m²/mth)	(µg/m³)	(µg/m³)	(µg/m³)	(g/m²/mth)
		Moolart		Complex Aodificat	c incorporat ion	ing the		Tota	l impact	
Receptor ID	24- hr ave.	Ann. ave.	24- hr ave.	Ann. ave.	Ann. ave.	Ann. ave.	Ann. ave.	Ann. ave.	Ann. ave.	Ann. ave.
					Air	quality impact	criteria	I		<u> </u>
	25	-	50	-	-	2	8	25	90	4
162	6	1	27	6	10	0.17	6	15	29	1
168	6	1	27	6	10	0.18	6	15	29	1
171	1	0	4	0	1	0.02	4	6	15	1
180	2	0	11	2	4	0.10	5	9	20	1
181	2	0	11	2	4	0.10	5	9	19	1
182	2	0	11	2	4	0.10	5	9	19	1
183	2	0	11	2	3	0.10	5	9	19	1
186	2	0	10	1	2	0.07	5	8	18	1
187	2	0	10	1	2	0.06	5	8	17	1
188	2	0	10	1	2	0.06	5	8	17	1
189	2	0	9	1	2	0.05	5	8	17	1
190	2	0	9	1	2	0.05	5	8	17	1
191	2	0	9	1	2	0.04	5	7	17	1
192	2	0	9	1	2	0.04	5	7	17	1
194	2	0	8	1	1	0.04	5	7	16	1
195	2	0	9	1	1	0.03	5	7	16	1
196	2	0	8	1	1	0.03	5	7	16	1
200	2	0	7	1	1	0.03	5	7	16	1
202	2	0	7	1	1	0.02	5	7	16	1
203	2	0	7	1	1	0.02	5	7	16	1
204	2	0	7	1	1	0.02	5	7	16	1
206	1	0	6	1	1	0.02	5	7	15	1
207	1	0	5	0	1	0.02	4	6	15	1
208	1	0	5	0	1	0.02	4	6	15	1
209	1	0	5	0	1	0.02	4	6	15	1
210	1	0	4	0	1	0.02	4	6	15	1
217	1	0	5	0	1	0.02	4	6	15	1
218	1	0	5	0	1	0.02	4	6	15	1
219	1	0	5	0	1	0.02	4	6	15	1
220	1	0	5	0	1	0.02	4	6	15	1
222	2	0	7	0	1	0.02	5	7	15	1
223	2	0	7	1	1	0.02	5	7	15	1
224	2	0	8	1	1	0.03	5	7	16	1
226	2	0	8	1	1	0.03	5	7	16	1
227	2	0	8	1	1	0.03	5	7	16	1
229	2	0	9	1	1	0.03	5	7	16	1
230	2	0	9	1	1	0.03	5	7	16	1
231	2	0	9	1	1	0.03	5	7	16	1
232	2	0	9	1	2	0.04	5	7	17	1
233	2	0	9	1	2	0.04	5	7	17	1
234	2	0	9	1	2	0.04	5	8	17	1
235	2	0	9	1	2	0.04	5	8	17	1
236	2	0	9	1	2	0.04	5	8	17	1
237	2	0	9	1	2	0.05	5	8	17	1
238	2	0	9	1	2	0.05	5	8	18	1

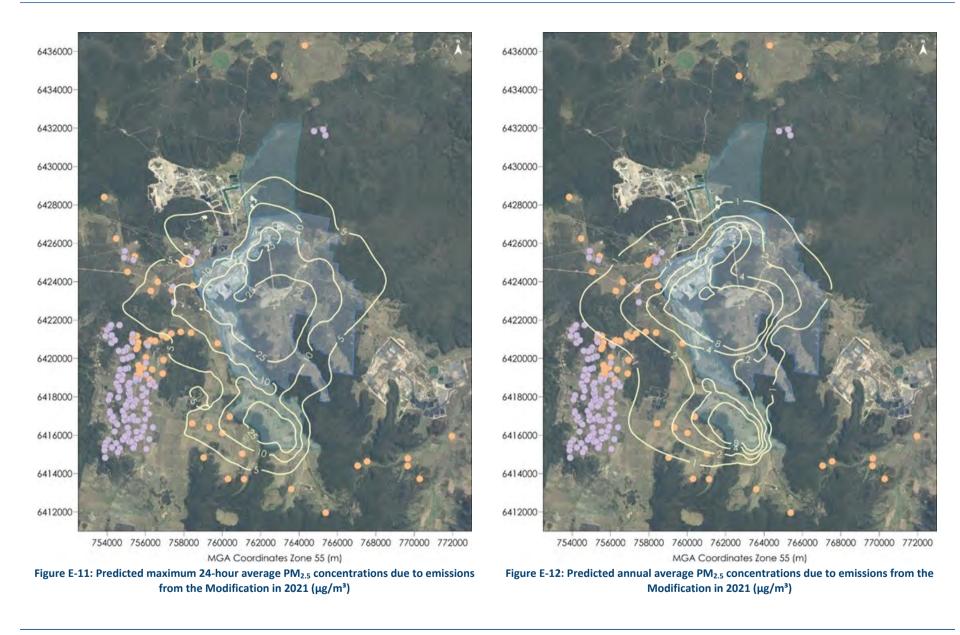

	PN	/I 2.5	PI	И ₁₀	TSP	DD	PM _{2.5}	PM ₁₀	TSP	DD
		/m³)		/m³)	(µg/m³)	(g/m²/mth)	(µg/m³)	(µg/m³)	(µg/m³)	(g/m²/mth)
		Moolart		Complex Aodificat	c incorporat	ting the		Tota	l impact	
Receptor ID	24-	Ann.	24-	Ann.	Ann.	Ann. ave.	Ann.	Ann.	Ann.	Ann. ave.
טו	hr	ave.	hr	ave.	ave.		ave.	ave.	ave.	
	ave.		ave.							
	25	-	50	-	Alr -	r quality impact 2	criteria 8	25	90	4
255	3	0	12	2	4	0.08	5	10	20	1
256	3	1	14	3	4	0.09	5	10	20	1
258	3	1	15	3	5	0.09	5	10	21	1
300	3	1	13	3	5	0.15	5	10	22	1
303	3	1	12	3	5	0.13	5	10	21	1
305	2	1	12	2	4	0.12	5	9	20	1
306	2	1	11	2	4	0.12	5	9	20	1
307	2	0	11	2	4	0.12	5	9	20	1
308	2	0	11	2	4	0.12	5	9	19	1
309	2	0	11	2	4	0.15	5	9	20	1
310	2	1	11	2	4	0.15	5	9	20	1
312	3	1	12	2	4	0.16	5	9	20	1
313	3	1	13	2	4	0.17	5	9	20	1
314	3	1	13	3	5	0.18	5	10	20	1
315	3	1	13	3	5	0.19	5	10	21	1
316	3	1	14	3	5	0.19	5	10	21	1
317	3	1	14	3	6	0.19	5	10	21	1
11 (a)	2	0	7	0	1	0.01	5	7	16	1
11 (b)	1	0	6	0	1	0.01	5	7	16	1
11 (c)	2	0	8	1	1	0.01	5	7	17	1
184 (a)	2	0	10	2	3	0.07	5	8	18	1
184 (b)	2	0	10	2	3	0.07	5	8	18	1
201 (a)	2	0	7	1	1	0.03	5	7	16	1
201 (b)	2	0	7	1	1	0.02	5	7	16	1
41 (a)	2	0	7	1	1	0.02	5	7	16	1
41 (b)	2	0	8	1	1	0.03	5	7	16	1
46B	7	1	34	6	10	0.17	6	16	30	1
					Mine-o	wned receptors	1			1
5	7	2	33	10	18	0.39	7	18	35	1
20	5	1	22	7	12	0.21	6	15	29	1
21	4	1	20	6	10	0.19	6	13	27	1
22	4	1	18	5	9	0.17	6	13	26	1
23	3	1	16	4	8	0.15	6	12	24	1
25	7	2	33	9	15	0.30	6	17	33	1
28	2	0	9	1	2	0.04	5	8	17	1
30	2	0	8	1	2	0.04	5	8	17	1
31	2	0	9	1	2	0.04	5	8	17	1
32	1	0	5	0	0	0.01	4	6	15	1
35	1	0	5	1	1	0.02	5	7	16	1
36	3	0	14	2	3	0.05	5	8	18	1
41	3	1	16	4	8	0.14	6	12	24	1
47	1	0	5	0	1	0.01	4	6	15	1
48	1	0	3	0	0	0.01	4	6	14	1
49	5	1	24	7	12	0.24	6	14	29	1
51	1	0	6	0	1	0.01	4	6	15	1

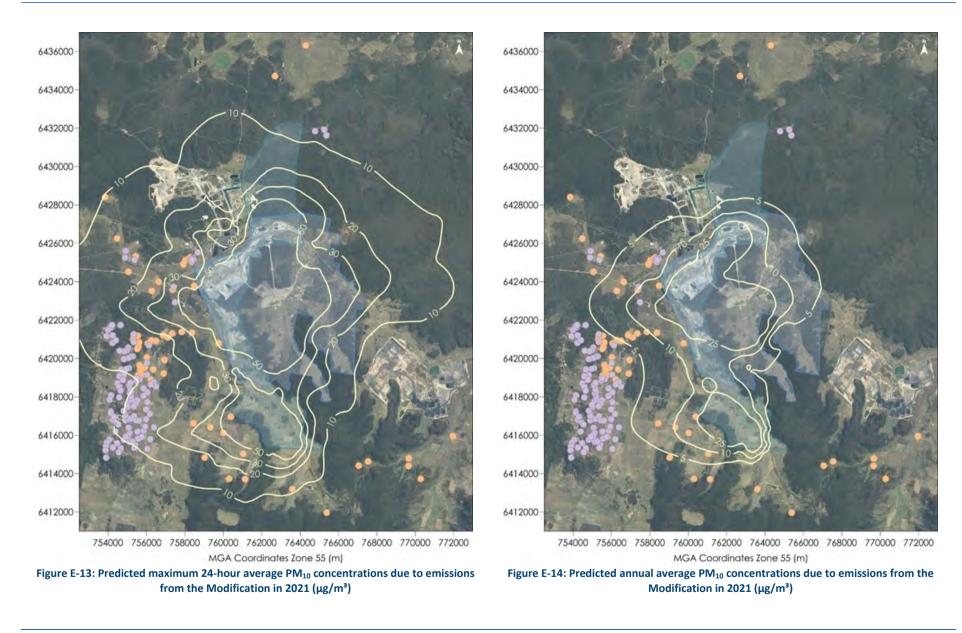

	PN	A _{2.5}	PI	И ₁₀	TSP	DD	PM _{2.5}	PM ₁₀	TSP	DD
	(µg,	/m³)	(μg,	/m³)	(µg/m³)	(g/m²/mth)	(µg/m³)	(µg/m³)	(µg/m³)	(g/m²/mth)
		Moolarb			(incorporat	ting the		Tota	l impact	
Receptor	24	A 10 10		/lodificat		A	A	A 10 10	A	A 1010
ID	24- hr	Ann. ave.	24- hr	Ann. ave.	Ann. ave.	Ann. ave.	Ann. ave.	Ann. ave.	Ann. ave.	Ann. ave.
	ave.	ave.	ave.	avc.	ave.		avc.	avc.	ave.	
			1	1	Air	quality impact	t criteria	1		1
	25	-	50	-	-	2	8	25	90	4
52	1	0	5	0	0	0.00	4	6	14	1
58	2	1	12	3	5	0.11	5	10	21	1
59	2	0	10	2	3	0.07	5	9	19	1
63	3	1	14	4	6	0.13	5	11	23	1
64	3	1	14	3	6	0.12	5	11	22	1
69	1	0	6	0	0	0.00	4	6	15	1
74	2	1	11	3	4	0.10	5	10	20	1
76	2	0	10	2	3	0.07	5	9	19	1
77	2	0	9	2	3	0.07	5	9	19	1
78	2	0	9	2	3	0.06	5	8	18	1
81	2	0	9	1	2	0.05	5	8	18	1
152	6	1	26	6	9	0.16	6	15	28	1
153	6	1	26	6	9	0.16	6	15	28	1
157	6	1	27	6	10	0.16	6	15	28	1
158	5	1	24	6	9	0.16	6	14	27	1
159	6	1	27	6	10	0.17	6	15	28	1
161	6	1	27	6	10	0.17	6	15	28	1
165	6	1	27	6	10	0.16	6	15	29	1
169	4	1	20	5	9	0.16	6	13	25	1
170	3	1	13	3	6	0.14	5	10	22	1
172	3	1	13	3	6	0.12	5	10	22	1
173	4	1	20	5	9	0.19	6	12	25	1
175	3	1	12	3	5	0.12	5	10	21	1
176	3	1	13	3	5	0.12	5	10	21	1
177	3	1	13	3	5	0.11	5	10	21	1
239	2	0	9	1	2	0.05	5	8	18	1
240	2	0	10	2	3	0.07	5	8	18	1
241	2	0	10	2	3	0.08	5	9	19	1
253	3	0	11	1	1	0.03	5	9	19	1
254	3	0	12	2	3	0.06	5	9	19	1
257	3	1	14	3	5	0.09	5	10	21	1
301	3	1	13	3	5	0.14	5	10	21	1
302	3	1	12	3	5	0.14	5	10	21	1
319	1	0	4	0	1	0.02	5	8	17	1
319	1	0	4	0	1	0.02	5	9	19	1
319	1	0	3	0	1	0.02	5	7	16	1
319	1	0	3	0	1	0.02	5	7	16	1
319	1	0	3	0	0	0.01	5	7	15	1
319	1	0	3	0	0	0.01	5	8	18	1
320	3	1	15	3	6	0.12	5	10	22	1
41C	6	1	27	6	10	0.17	6	15	28	1
29c	2	0	7	1	1	0.02	5	7	16	1

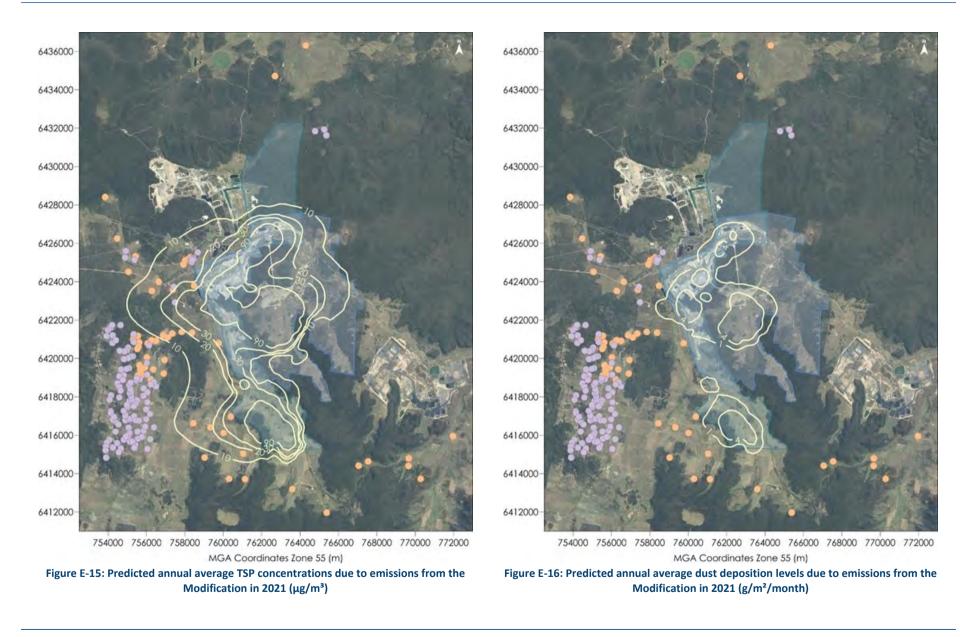

Appendix E

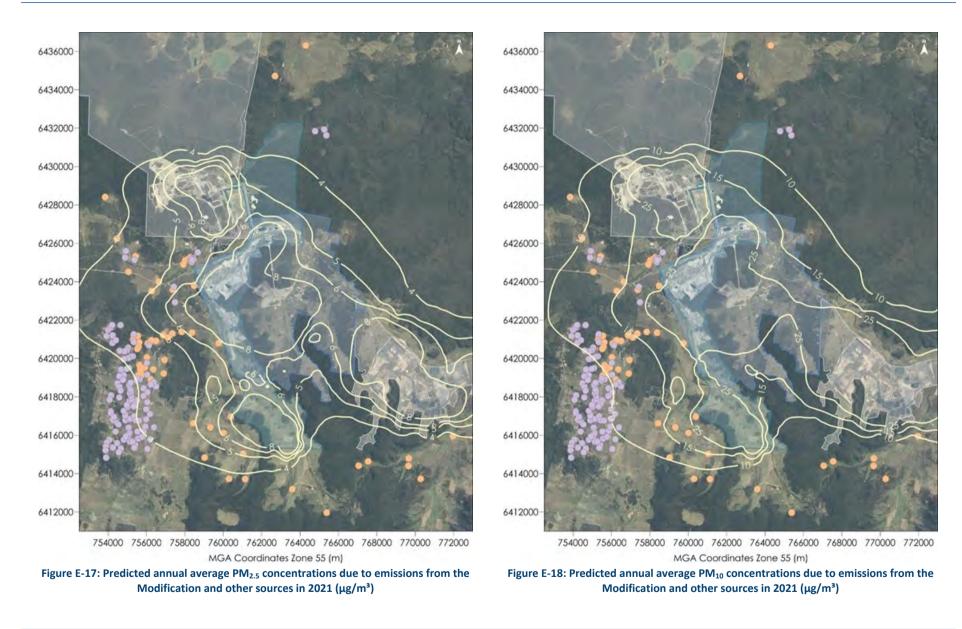

Isopleth Diagrams

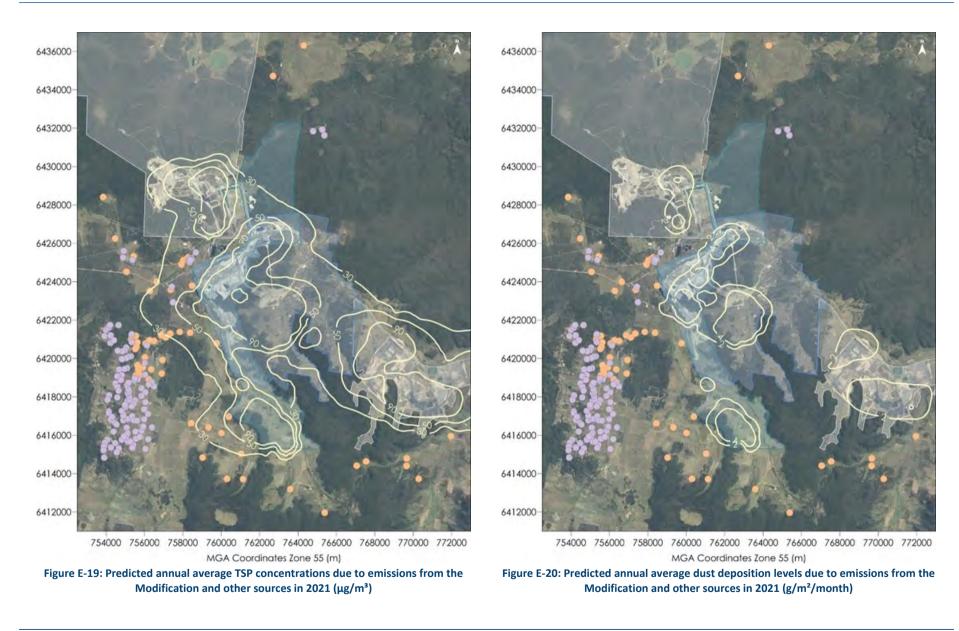


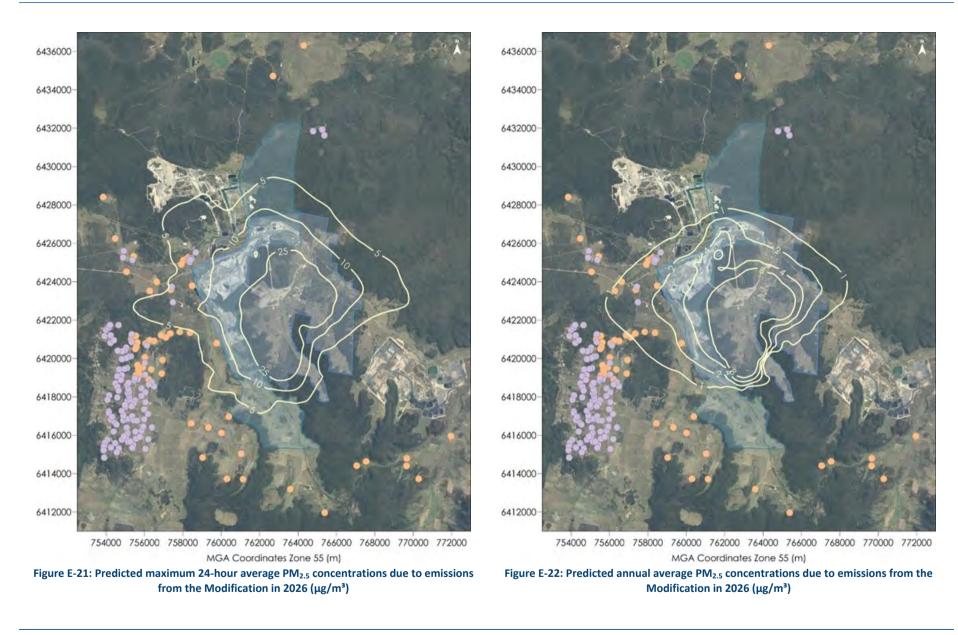


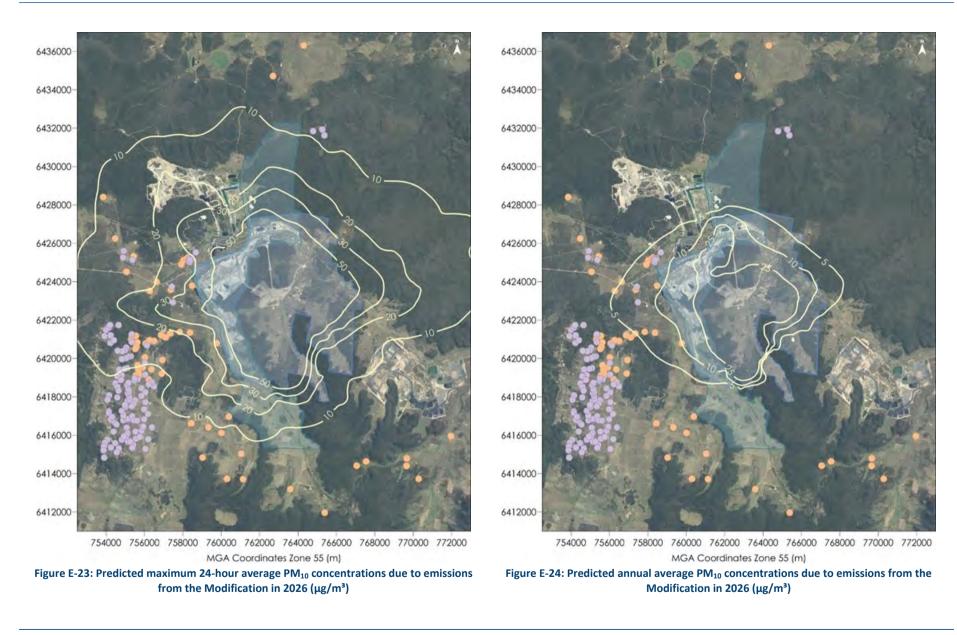


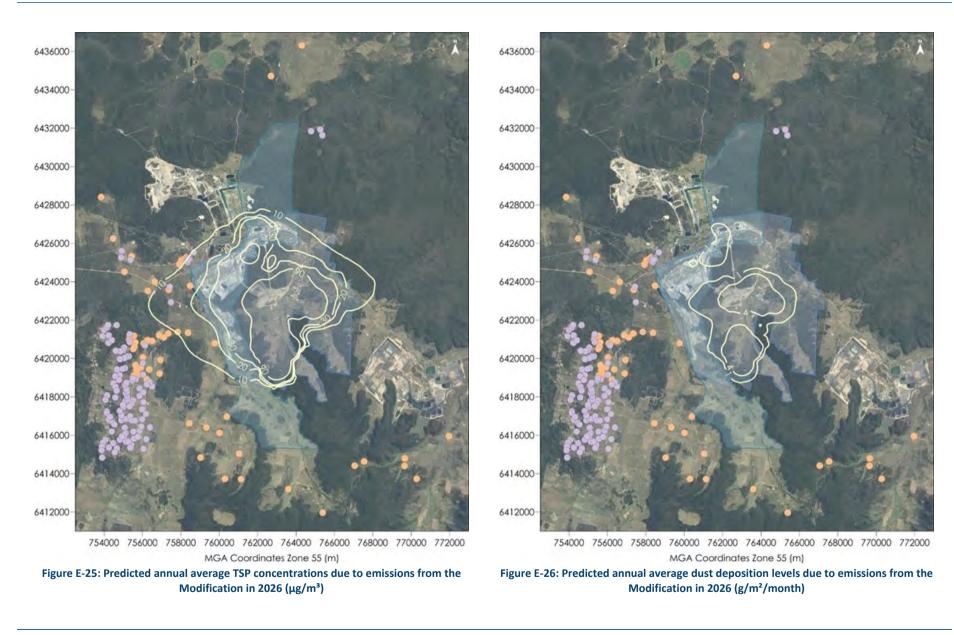


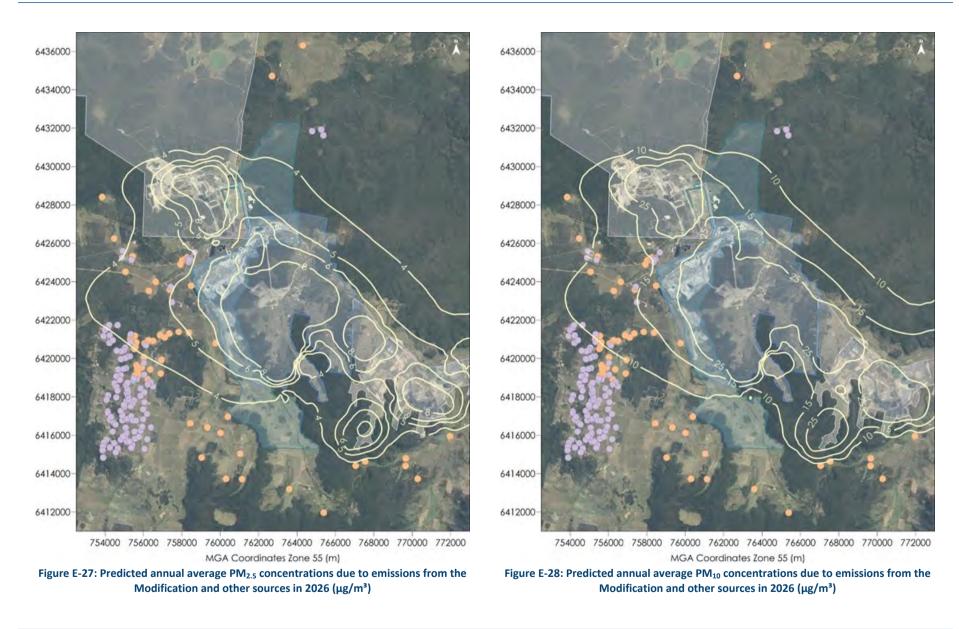


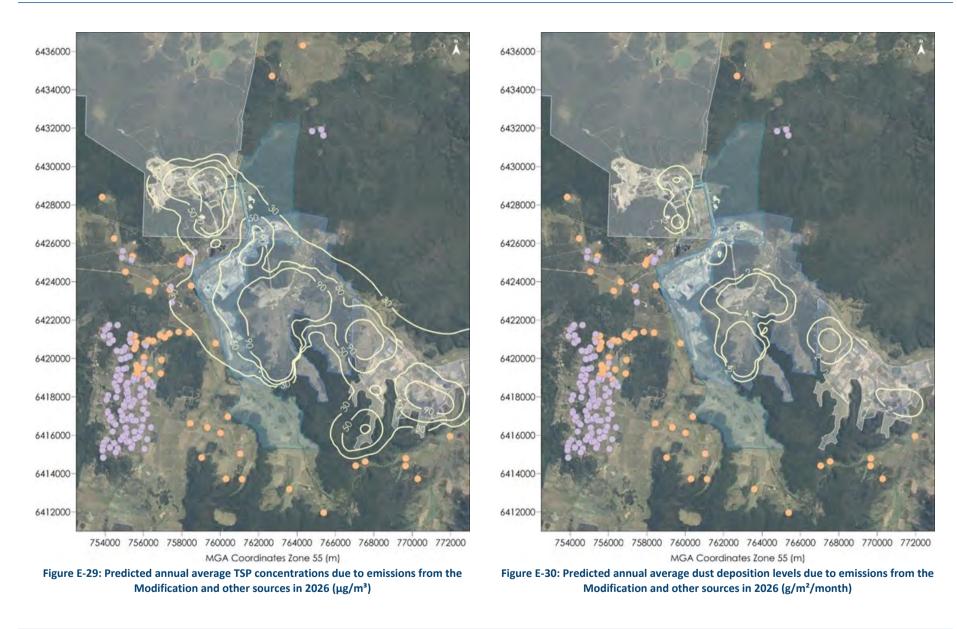












Appendix F

Further detail regarding 24-hour PM₁₀ analysis

Ranked by Hi	ghest to Lowest	Background (Concentration	Ranked by Highest to Lowest Predicted Incremental Concentration			
Date	Measured background level	Predicted increment	Total cumulative 24-hr average level	Date	Measured background level	Predicted increment	Total cumulative 24-hr average level
28/06/2011	45.7	15.1	60.8	27/04/2011	8.2	21.9	30.1
4/04/2011	32.7	9.8	42.5	29/06/2011	9.6	20.1	29.7
20/05/2011	32.2	2.3	34.5	30/06/2011	11.4	18.8	30.2
27/06/2011	29.9	2.8	32.7	20/03/2011	7.9	18.7	26.6
14/07/2011	29.1	1.3	30.4	5/04/2011	16.2	17.5	33.7
28/01/2011	27.6	7.3	34.9	16/04/2011	5.6	17.5	23.1
2/06/2011	27	16.7	43.7	6/04/2011	9.5	17.1	26.6
19/05/2011	26.8	-0.6	26.2	26/04/2011	7.6	16.8	24.4
29/01/2011	26.7	0.0	26.7	2/06/2011	27	16.7	43.7
19/09/2011	26.3	0.9	27.2	17/04/2011	8.1	16.3	24.4

Table F-1: 24-hour average PM_{10} concentration ($\mu g/m^3$) – Sensitive receptor location R9 in 2019

Note – A negative predicted increment indicates that modelled impacts of mining operations in 2011 are greater than the modelled impacts of the Modification for that receiver. The derivation of these results in discussed in Section 7.3.2.

Ranked by Hi	ghest to Lowest	Background (Concentration	Ranked by Highest to Lowest Predicted Incremental Concentration			
Date	Measured background level	Predicted increment	Total cumulative 24-hr average level	Date	Measured background level	Predicted increment	Total cumulative 24-hr average level
28/06/2011	45.7	-3.0	42.7	14/06/2011	5.8	8.6	14.4
4/04/2011	32.7	-6.0	26.7	21/08/2011	ND	7.8	7.8
20/05/2011	32.2	-3.6	28.6	22/08/2011	ND	7.7	7.7
27/06/2011	29.9	-2.4	27.5	13/06/2011	2.7	7.6	10.3
14/07/2011	29.1	-4.7	24.4	20/08/2011	ND	7.4	7.4
28/01/2011	27.6	-14.5	13.1	1/06/2011	10.5	6.8	17.3
2/06/2011	27	3.1	30.1	11/06/2011	8.2	6.7	14.9
19/05/2011	26.8	-6.1	20.7	16/04/2011	5.6	6.3	11.9
29/01/2011	26.7	-19.1	7.6	25/09/2011	2.1	6.3	8.4
19/09/2011	26.3	-10.1	16.2	15/06/2011	4.4	5.7	10.1

Note – A negative predicted increment indicates that modelled impacts of mining operations in 2011 are greater than the modelled impacts of the Modification for that receiver. The derivation of these results in discussed in Section 7.3.2.

Ranked by Hi	ghest to Lowest	Background (Concentration	Ranked by Highest to Lowest Predicted Incremental Concentration				
Date	Measured background level	Predicted increment	Total cumulative 24-hr average level	Date	Measured background level	Predicted increment	Total cumulative 24-hr average level	
28/06/2011	45.7	7.4	53.1	16/07/2011	ND	14.5	14.5	
4/04/2011	32.7	5.9	38.6	29/01/2011	26.7	13.4	40.1	
20/05/2011	32.2	3.4	35.6	29/03/2011	10.6	12.8	23.4	
27/06/2011	29.9	2.0	31.9	14/10/2011	9.1	12.3	21.4	
14/07/2011	29.1	2.4	31.5	26/10/2011	3.4	12.1	15.5	
28/01/2011	27.6	8.9	36.5	25/11/2011	ND	12.1	12.1	
2/06/2011	27	8.1	35.1	8/01/2011	10.7	12.0	22.7	
19/05/2011	26.8	5.7	32.5	29/05/2011	9.3	11.7	21.0	
29/01/2011	26.7	13.4	40.1	20/03/2011	7.9	11.5	19.4	
19/09/2011	26.3	5.4	31.7	13/10/2011	11.6	11.4	23.0	

Table F-3: 24-hour average PM_{10} concentration ($\mu g/m^3$) – Sensitive receptor location R37 in 2019

ND – No Data

Table F-4: 24-hour average PM_{10} concentration ($\mu g/m^3$) – Sensitive receptor location R40 in 2019

Ranked by H	ighest to Lowes	t Background	Concentration	Ranked by	Ranked by Highest to Lowest Predicted Incremental Concentration			
Date	Measured background level	Predicted increment	Total cumulative 24-hr average level	Date	Measured background level	Predicted increment	Total cumulative 24-hr average level	
15/03/2011	45.7	9.9	55.6	26/10/2011	3.4	18.5	21.9	
28/02/2011	32.7	0.2	32.9	24/11/2011	1.8	13.6	15.4	
19/06/2011	32.2	0.0	32.2	23/11/2011	ND	13.4	13.4	
24/07/2011	29.9	2.0	31.9	27/10/2011	7.4	13.2	20.6	
13/06/2011	29.1	1.0	30.1	26/04/2011	7.6	12.0	19.6	
22/01/2011	27.6	5.4	33.0	9/12/2011	6.7	11.9	18.6	
17/08/2011	27	8.7	35.7	19/03/2011	5.9	11.6	17.5	
17/06/2011	26.8	0.7	27.5	18/03/2011	13.6	11.6	25.2	
4/03/2011	26.7	1.1	27.8	9/01/2011	12.2	11.3	23.5	
3/07/2011	26.3	2.3	28.6	29/01/2011	26.7	11.3	38.0	

Ranked by H	ighest to Lowes	t Background	Concentration	Ranked by Highest to Lowest Predicted Incremental Concentration			
Date	Measured background level	Predicted increment	Total cumulative 24-hr average level	Date	Measured background level	Predicted increment	Total cumulative 24-hr average level
28/06/2011	45.7	14.2	59.9	2/06/2011	27	15.4	42.4
4/04/2011	32.7	8.5	41.2	31/12/2011	10.3	14.7	25.0
20/05/2011	32.2	6.4	38.6	3/09/2011	4.6	14.6	19.2
27/06/2011	29.9	4.5	34.4	17/11/2011	3.8	14.5	18.3
14/07/2011	29.1	3.9	33.0	29/06/2011	9.6	14.3	23.9
28/01/2011	27.6	7.2	34.8	30/06/2011	11.4	14.3	25.7
2/06/2011	27	15.4	42.4	28/06/2011	45.7	14.2	59.9
19/05/2011	26.8	7.4	34.2	6/04/2011	9.5	14.1	23.6
29/01/2011	26.7	6.2	32.9	8/04/2011	11.4	13.7	25.1
19/09/2011	26.3	4.9	31.2	16/08/2011	ND	13.7	13.7

Table F-5: 24-hour average PM_{10} concentration ($\mu g/m^3$) – Sensitive receptor location R70 in 2019

Table F-6: 24-hour average PM_{10} concentration ($\mu g/m^3$) – Sensitive receptor location R168 in 2019

Ranked by Hi	ghest to Lowest	Background C	Concentration	Ranked by Highest to Lowest Predicted Incremental Concentration				
Date	Measured background level	Predicted increment	Total cumulative 24-hr average level	Date	Measured background level	Predicted increment	Total cumulative 24-hr average level	
28/06/2011	45.7	-4.2	41.5	19/09/2011	31.3	1.3	32.6	
4/04/2011	32.7	-3.0	29.7	21/12/2011	10.8	1.2	12.0	
20/05/2011	32.2	-3.7	28.5	30/05/2011	6.9	1.1	8.0	
27/06/2011	29.9	0.1	30.0	6/02/2011	5.8	0.9	6.7	
14/07/2011	29.1	-1.1	28.0	17/12/2011	12.8	0.7	13.5	
28/01/2011	27.6	-5.1	22.5	19/08/2011	2.3	0.6	2.9	
2/06/2011	27	-5.3	21.7	2/04/2011	13.1	0.6	13.7	
19/05/2011	26.8	-3.2	23.6	1/07/2011	13	0.6	13.6	
29/01/2011	26.7	-1.7	25.0	4/05/2011	10.3	0.4	10.7	
19/09/2011	26.3	1.3	27.6	30/11/2011	14.3	0.3	14.6	

Note – A negative predicted increment indicates that modelled impacts of mining operations in 2011 are greater than the modelled impacts of the Modification for that receiver. The derivation of these results in discussed in Section 7.3.2.

	ghest to Lowest			Ranked by Highest to Lowest Predicted Incremental Concentration			
Date	Measured background level	Predicted increment	Total cumulative 24-hr average level	Date	Measured background level	Predicted increment	Total cumulative 24-hr average level
28/06/2011	45.7	29.6	75.3	27/04/2011	8.2	38.6	46.8
4/04/2011	32.7	14.9	47.6	29/06/2011	9.6	36.1	45.7
20/05/2011	32.2	7.6	39.8	20/03/2011	7.9	34.6	42.5
27/06/2011	29.9	7.1	37.0	30/06/2011	11.4	32.4	43.8
14/07/2011	29.1	5.2	34.3	26/04/2011	7.6	32.1	39.7
28/01/2011	27.6	11.3	38.9	8/12/2011	3.8	30.0	33.8
2/06/2011	27	29.3	56.3	16/07/2011	ND	30.0	30.0
19/05/2011	26.8	5.2	32.0	28/06/2011	45.7	29.6	75.3
29/01/2011	26.7	2.0	28.7	5/04/2011	16.2	29.6	45.8
19/09/2011	26.3	0.7	27.0	2/06/2011	27	29.3	56.3
23/09/2011	25.8	0.4	26.2	8/04/2011	11.4	29.1	40.5
22/01/2011	25.4	-4.8	20.6	24/04/2011	15	28.6	43.6
5/03/2011	24.4	18.9	43.3	6/04/2011	9.5	28.1	37.6
19/01/2011	23.5	24.7	48.2	25/04/2011	9.3	27.6	36.9
24/09/2011	23.5	-7.7	15.8	17/04/2011	8.1	27.4	35.5
17/05/2011	22.8	4.1	26.9	23/02/2011	9	27.0	36.0

Table F-7: 24-hour average PM_{10} concentration ($\mu g/m^3$) – Sensitive receptor location R9 in 2021

Note – A negative predicted increment indicates that modelled impacts of mining operations in 2011 are greater than the modelled impacts of the Modification for that receiver. The derivation of these results in discussed in Section 7.3.2.

ND – No Data

Ranked by Hi	ghest to Lowest	Background (Concentration	Ranked by Highest to Lowest Predicted Incremental Concentration			
Date	Measured background level	Predicted increment	Total cumulative 24-hr average level	Date	Measured background level	Predicted increment	Total cumulative 24-hr average level
28/06/2011	45.7	6.3	52.0	21/08/2011	ND	21.9	21.9
4/04/2011	32.7	-3.5	29.2	1/06/2011	10.5	19.7	30.2
20/05/2011	32.2	1.0	33.2	13/06/2011	2.7	19.5	22.2
27/06/2011	29.9	1.1	31.0	28/04/2011	6.5	17.6	24.1
14/07/2011	29.1	-2.2	26.9	16/04/2011	5.6	16.3	21.9
28/01/2011	27.6	-14.6	13.0	2/06/2011	27	16.1	43.1
2/06/2011	27	16.1	43.1	25/09/2011	2.1	15.8	17.9
19/05/2011	26.8	-1.0	25.8	20/08/2011	ND	15.3	15.3
29/01/2011	26.7	-19.4	7.3	17/04/2011	8.1	13.9	22.0
19/09/2011	26.3	-11.6	14.7	22/08/2011	ND	12.9	12.9

Table F-8: 24-hour average PM_{10} concentration ($\mu g/m^3$) – Sensitive receptor location R26 in 2021

Note – A negative predicted increment indicates that modelled impacts of mining operations in 2011 are greater than the modelled impacts of the Modification for that receiver. The derivation of these results in discussed in Section 7.3.2. ND – No Data

Ranked by Hi	ghest to Lowest	Background (Concentration	Ranked by Highest to Lowest Predicted Incremental Concentration				
Date	Measured background level	Predicted increment	Total cumulative 24-hr average level	Date	Measured background level	Predicted increment	Total cumulative 24-hr average level	
28/06/2011	45.7	9.9	55.6	29/03/2011	10.6	14.4	25.0	
4/04/2011	32.7	5.9	38.6	16/07/2011	ND	12.9	12.9	
20/05/2011	32.2	3.5	35.7	20/03/2011	7.9	11.7	19.6	
27/06/2011	29.9	2.5	32.4	14/10/2011	9.1	11.5	20.6	
14/07/2011	29.1	2.3	31.4	29/01/2011	26.7	11.5	38.2	
28/01/2011	27.6	5.3	32.9	29/06/2011	9.6	11.4	21.0	
2/06/2011	27	11.1	38.1	27/04/2011	8.2	11.3	19.5	
19/05/2011	26.8	3.7	30.5	2/06/2011	27	11.1	38.1	
29/01/2011	26.7	11.5	38.2	4/01/2011	4.8	11.0	15.8	
19/09/2011	26.3	3.2	29.5	30/06/2011	11.4	10.4	21.8	

Table F-9: 24-hour average PM_{10} concentration ($\mu g/m^3$) – Sensitive receptor location R37 in 2021

ND – No Data

Tab	le F-10: 24-hour	average PM ₁₀	concentration	(µg/m³) – Sensi	tive receptor lo	cation R40 in 2	2021
Ranked by Hi	ghest to Lowest	Background C	Concentration	Ranked by	Highest to Lowe Concent		ncremental
Date	Measured background level	Predicted increment	Total cumulative 24-hr average level	Date	Measured background level	Predicted increment	Total cumulative 24-hr average level
15/03/2011	45.7	6.0	51.7	26/10/2011	3.4	18.4	21.8
28/02/2011	32.7	0.2	32.9	16/07/2011	ND	16.2	16.2
19/06/2011	32.2	0.0	32.2	29/01/2011	26.7	15.6	42.3
24/07/2011	29.9	1.9	31.8	14/10/2011	9.1	14.6	23.7
13/06/2011	29.1	1.4	30.5	8/01/2011	10.7	14.2	24.9
22/01/2011	27.6	4.3	31.9	25/11/2011	ND	13.6	13.6
17/08/2011	27	8.0	35.0	27/10/2011	7.4	13.3	20.7
17/06/2011	26.8	0.5	27.3	20/03/2011	7.9	13.2	21.1
4/03/2011	26.7	1.1	27.8	29/03/2011	10.6	12.8	23.4
3/07/2011	26.3	2.3	28.6	20/01/2011	20.1	12.8	32.9

ND – No Data

Ranked by Hi	ghest to Lowest	Background C	Concentration	Ranked by Highest to Lowest Predicted Incremental Concentration				
Date	Measured background level	Predicted increment	Total cumulative 24-hr average level	Date	Measured background level	Predicted increment	Total cumulative 24-hr average level	
28/06/2011	45.7	5.2	50.9	17/11/2011	3.8	15.2	19.0	
4/04/2011	32.7	4.3	37.0	15/03/2011	8.2	11.9	20.1	
20/05/2011	32.2	4.5	36.7	24/12/2011	7.6	11.0	18.6	
27/06/2011	29.9	2.7	32.6	24/09/2011	23.5	10.9	34.4	
14/07/2011	29.1	2.3	31.4	21/12/2011	12	10.7	22.7	
28/01/2011	27.6	9.0	36.6	17/12/2011	10.4	10.6	21.0	
2/06/2011	27	5.4	32.4	4/01/2011	4.8	9.8	14.6	
19/05/2011	26.8	5.4	32.2	17/03/2011	16.4	9.4	25.8	
29/01/2011	26.7	7.9	34.6	26/09/2011	4.5	9.2	13.7	
19/09/2011	26.3	3.5	29.8	15/08/2011	ND	9.0	9.0	

Table F-11: 24-hour average PM_{10} concentration ($\mu g/m^3$) – Sensitive receptor location R70 in 2021

Table F-12: 24-hour average PM_{10} concentration ($\mu g/m^3$) – Sensitive receptor location R168 in 2021

Ranked by Hi	ghest to Lowest	Background (Concentration	Ranked by Highest to Lowest Predicted Incremental Concentration			
Date	Measured background level	Predicted increment	Total cumulative 24-hr average level	Date	Measured background level	Predicted increment	Total cumulative 24-hr average level
28/06/2011	45.7	-1.9	43.8	30/05/2011	6.9	4.8	11.7
4/04/2011	32.7	-1.0	31.7	28/04/2011	8.7	4.3	13.0
20/05/2011	32.2	-2.6	29.6	1/07/2011	13	4.2	17.2
27/06/2011	29.9	1.5	31.4	12/06/2011	7.3	2.5	9.8
14/07/2011	29.1	0.1	29.2	6/02/2011	5.8	2.1	7.9
28/01/2011	27.6	-5.6	22.0	3/05/2011	10.9	1.9	12.8
2/06/2011	27	-1.2	25.8	26/09/2011	8.9	1.8	10.7
19/05/2011	26.8	-1.5	25.3	4/05/2011	10.3	1.7	12.0
29/01/2011	26.7	-2.4	24.3	23/07/2011	4	1.7	5.7
19/09/2011	26.3	1.2	27.5	27/06/2011	14.5	1.5	16.0

Note – A negative predicted increment indicates that modelled impacts of mining operations in 2011 are greater than the modelled impacts of the Modification for that receiver. The derivation of these results in discussed in Section 7.3.2.

Ranked by Hi	ghest to Lowest	Background (Concentration	Ranked by Highest to Lowest Predicted Incremental Concentration			
Date	Measured background level	Predicted increment	Total cumulative 24-hr average level	Date	Measured background level	Predicted increment	Total cumulative 24-hr average level
28/06/2011	45.7	8.7	54.4	16/07/2011	ND	30.6	30.6
4/04/2011	32.7	5.2	37.9	27/10/2011	7.4	18.9	26.3
20/05/2011	32.2	-5.2	27.0	9/01/2011	12.2	18.7	30.9
27/06/2011	29.9	-2.2	27.7	26/10/2011	3.4	18.6	22.0
14/07/2011	29.1	-5.9	23.2	23/02/2011	9	18.0	27.0
28/01/2011	27.6	1.9	29.5	24/11/2011	1.8	17.7	19.5
2/06/2011	27	8.5	35.5	25/11/2011	ND	17.6	17.6
19/05/2011	26.8	-7.3	19.5	7/12/2011	6.5	17.5	24.0
29/01/2011	26.7	4.3	31.0	5/12/2011	9.6	16.9	26.5
19/09/2011	26.3	-2.7	23.6	27/03/2011	9.8	16.8	26.6

Table F-13: 24-hour average PM_{10} concentration ($\mu g/m^3$) – Sensitive receptor location R9 in 2026

Note – A negative predicted increment indicates that modelled impacts of mining operations in 2011 are greater than the modelled impacts of the Modification for that receiver. The derivation of these results in discussed in Section 7.3.2. ND – No Data

Table F-14: 24-hour average PM_{10} concentration ($\mu g/m^3$) – Sensitive receptor location R26 in 2026

Ranked by Hi	ghest to Lowest	Background (Concentration	Ranked by Highest to Lowest Predicted Incremental Concentration			
Date	Measured background level	Predicted increment	Total cumulative 24-hr average level	Date	Measured background level	Predicted increment	Total cumulative 24-hr average level
28/06/2011	45.7	-3.2	42.5	29/06/2011	9.6	8.0	17.6
4/04/2011	32.7	-11.0	21.7	13/06/2011	2.7	7.6	10.3
20/05/2011	32.2	-9.4	22.8	15/06/2011	4.4	6.9	11.3
27/06/2011	29.9	-6.0	23.9	20/03/2011	7.9	6.5	14.4
14/07/2011	29.1	-10.8	18.3	22/08/2011	ND	5.5	5.5
28/01/2011	27.6	-16.9	10.7	8/12/2011	3.8	5.3	9.1
2/06/2011	27	-5.9	21.1	27/04/2011	8.2	3.9	12.1
19/05/2011	26.8	-10.2	16.6	2/10/2011	2.3	3.7	6.0
29/01/2011	26.7	-19.1	7.6	26/04/2011	7.6	3.5	11.1
19/09/2011	26.3	-14.0	12.3	20/08/2011	ND	3.2	3.2

Note – A negative predicted increment indicates that modelled impacts of mining operations in 2011 are greater than the modelled impacts of the Modification for that receiver. The derivation of these results in discussed in Section 7.3.2.

Ranked by Hi	ghest to Lowest	Background C	Concentration	Ranked by Highest to Lowest Predicted Incremental Concentration				
Date	Measured background level	Predicted increment	Total cumulative 24-hr average level	Date	Measured background level	Predicted increment	Total cumulative 24-hr average level	
28/06/2011	45.7	0.8	46.5	17/11/2011	3.8	8.5	12.3	
4/04/2011	32.7	0.2	32.9	21/12/2011	12	4.6	16.6	
20/05/2011	32.2	0.7	32.9	24/09/2011	23.5	4.3	27.8	
27/06/2011	29.9	0.0	29.9	4/11/2011	9.2	3.8	13.0	
14/07/2011	29.1	0.5	29.6	23/11/2011	ND	3.6	3.6	
28/01/2011	27.6	1.5	29.1	18/03/2011	13.6	3.5	17.1	
2/06/2011	27	0.1	27.1	2/07/2011	10.2	3.4	13.6	
19/05/2011	26.8	1.7	28.5	3/11/2011	8.8	3.2	12.0	
29/01/2011	26.7	1.1	27.8	27/12/2011	6.4	3.2	9.6	
19/09/2011	26.3	2.6	28.9	14/12/2011	9.9	3.2	13.1	

Table F-15: 24-hour average PM_{10} concentration ($\mu g/m^3$) – Sensitive receptor location R37 in 2026

Table F-16: 24-hour average PM_{10} concentration ($\mu g/m^3$) – Sensitive receptor location R40 in 2026

Ranked by Hi	ghest to Lowest	Background C	Concentration	Ranked by Highest to Lowest Predicted Incremental Concentration				
Date	Measured background level	Predicted increment	Total cumulative 24-hr average level	Date	Measured background level	Predicted increment	Total cumulative 24-hr average level	
15/03/2011	45.7	2.1	47.8	17/11/2011	3.8	7.7	11.5	
28/02/2011	32.7	0.0	32.7	23/11/2011	ND	4.7	4.7	
19/06/2011	32.2	0.0	32.2	24/09/2011	23.5	3.8	27.3	
24/07/2011	29.9	0.0	29.9	18/03/2011	13.6	3.5	17.1	
13/06/2011	29.1	0.0	29.1	22/11/2011	ND	3.5	3.5	
22/01/2011	27.6	0.8	28.4	4/11/2011	9.2	3.3	12.5	
17/08/2011	27	1.3	28.3	21/12/2011	12	3.3	15.3	
17/06/2011	26.8	0.0	26.8	14/12/2011	9.9	3.0	12.9	
4/03/2011	26.7	0.1	26.8	2/07/2011	10.2	2.9	13.1	
3/07/2011	26.3	0.2	26.5	17/12/2011	10.4	2.9	13.3	

Ranked by Hi	ghest to Lowest	Background (Concentration	Ranked by Highest to Lowest Predicted Incremental Concentration			
Date	Measured background level	Predicted increment	Total cumulative 24-hr average level	Date	Measured background level	Predicted increment	Total cumulative 24-hr average level
28/06/2011	45.7	3.8	49.5	26/10/2011	3.4	13.7	17.1
4/04/2011	32.7	4.1	36.8	29/01/2011	26.7	12.2	38.9
20/05/2011	32.2	1.2	33.4	17/11/2011	3.8	12.0	15.8
27/06/2011	29.9	0.3	30.2	25/11/2011	ND	11.9	11.9
14/07/2011	29.1	0.5	29.6	8/01/2011	10.7	11.8	22.5
28/01/2011	27.6	7.6	35.2	14/10/2011	9.1	11.8	20.9
2/06/2011	27	2.4	29.4	27/10/2011	7.4	11.7	19.1
19/05/2011	26.8	2.9	29.7	4/01/2011	4.8	11.6	16.4
29/01/2011	26.7	12.2	38.9	9/12/2011	6.7	11.0	17.7
19/09/2011	26.3	3.0	29.3	21/03/2011	14.3	10.9	25.2

Table F-17: 24-hour average PM_{10} concentration ($\mu g/m^3$) – Sensitive receptor location R70 in 2026

Table F-18: 24-hour average PM_{10} concentration ($\mu g/m^3$) – Sensitive receptor location R168 in 2026

Ranked by Hi	ghest to Lowest	Background (Concentration	Ranked by Highest to Lowest Predicted Incremental Concentration			
Date	Measured background level	Predicted increment	Total cumulative 24-hr average level	Date	Measured background level	Predicted increment	Total cumulative 24-hr average level
28/06/2011	45.7	2.2	47.9	28/04/2011	8.7	9.1	17.8
4/04/2011	32.7	-2.7	30.0	21/08/2011	12.8	8.2	21.0
20/05/2011	32.2	-6.2	26.0	1/07/2011	13	7.4	20.4
27/06/2011	29.9	0.7	30.6	2/06/2011	21.5	6.6	28.1
14/07/2011	29.1	-0.7	28.4	13/06/2011	8.3	6.2	14.5
28/01/2011	27.6	-5.3	22.3	25/09/2011	4.2	6.1	10.3
2/06/2011	27	6.6	33.6	29/04/2011	5.4	5.6	11.0
19/05/2011	26.8	-3.0	23.8	22/08/2011	8.2	4.6	12.8
29/01/2011	26.7	-5.4	21.3	16/04/2011	5.3	4.3	9.6
19/09/2011	26.3	-2.8	23.5	12/06/2011	7.3	4.2	11.5

Note – A negative predicted increment indicates that modelled impacts of mining operations in 2011 are greater than the modelled impacts of the Modification for that receiver. The derivation of these results in discussed in Section 7.3.2.